Find the value

Algebra Level 3

A = f ( 1 100 ) + f ( 2 100 ) + f ( 3 100 ) + . . . . . . + f ( 99 100 ) + f ( 100 100 ) + f ( 100 99 ) + . . . . . . + f ( 100 3 ) + f ( 100 2 ) + f ( 100 1 ) \begin{aligned} A & = f \left(\frac{1}{100}\right) + f\left(\frac{2}{100}\right) + f\left(\frac{3}{100}\right) + ... \\ & \quad \quad \quad ... + f\left(\frac{99}{100}\right) + f\left(\frac{100}{100}\right) + f\left(\frac{100}{99}\right) + ... \\ & \quad \quad \quad \quad \quad \quad ... + f\left(\frac {100}3 \right) + f\left(\frac{100}{2}\right) + f\left(\frac{100}{1}\right) \end{aligned}

Given that f ( x ) = x 2 1 + x 2 f(x) = \dfrac {x^2}{1+x^2} , find the value of A A above.


The answer is 99.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider the following, where k k is a positive integer.

{ f ( k 100 ) = k 2 10 0 2 1 + k 2 10 0 2 = k 2 10 0 2 + k 2 f ( 100 k ) = 10 0 2 k 2 1 + 10 0 2 k 2 = 10 0 2 k 2 + 10 0 2 f ( k 100 ) + f ( 100 k ) = k 2 10 0 2 + k 2 + 10 0 2 k 2 + 10 0 2 = 1 \begin{cases} f \left(\dfrac k{100}\right) = \dfrac {\frac {k^2}{100^2}}{1+\frac {k^2}{100^2}} = \dfrac {k^2}{100^2+k^2} \\ f \left(\dfrac {100}k\right) = \dfrac {\frac {100^2}{k^2}}{1+\frac {100^2}{k^2}} = \dfrac {100^2}{k^2+100^2} \end{cases} \implies f \left(\dfrac k{100}\right) + f \left(\dfrac {100}k\right) = \dfrac {k^2}{100^2+k^2} + \dfrac {100^2}{k^2+100^2} =1

A = k = 1 99 f ( k 100 ) + f ( 100 100 ) + k = 1 99 f ( 100 k ) = k = 1 99 ( f ( k 100 ) + f ( 100 k ) ) + f ( 1 ) = k = 1 99 1 + 1 2 1 + 1 2 = 99 + 1 2 = 99.5 \begin{aligned} \implies A & = \sum_{k=1}^{99} f \left(\frac k{100}\right) + f \left(\frac {100}{100}\right) + \sum_{k=1}^{99} f \left(\frac {100}k\right) \\ & = \sum_{k=1}^{99} \left(f \left(\frac k{100}\right) + f \left(\frac {100}k \right)\right) + f(1) \\ & = \sum_{k=1}^{99} 1 + \frac {1^2}{1+1^2} \\ & = 99 + \frac 12 = \boxed{99.5} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...