Find the value

Geometry Level 2

A B C \triangle ABC and A C E \triangle ACE are right triangles. The extended B C BC and B D BD are tangent to the circle. Find

1 A B + 1 A D 1 A C + 1 A E \large \frac {\frac 1{AB}+\frac 1{AD}}{\frac 1{AC}+\frac 1{AE}}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 14, 2020

Let the center of the circle be O O and its radius t t ; and A B C = θ \angle ABC = \theta . Then A B O = C B O = θ 2 \angle ABO = \angle CBO = \frac \theta 2 . Let A D = 1 AD=1 . Then A D = t AD=t and A B = 1 t AB=1-t . Note that tan θ 2 = t \tan \frac \theta 2 = t . By half-angle tangent substitution , we have

A C = A B tan θ = ( 1 t ) 2 t 1 t 2 = 2 t 1 + t A E = A C cos θ = 2 t 1 + t 1 t 2 1 + t 2 = 2 t ( 1 t ) 1 + t 2 \begin{aligned} AC & = AB \cdot \tan \theta = (1-t) \cdot \frac {2t}{1-t^2} = \frac {2t}{1+t} \\ AE & = AC\cdot \cos \theta = \frac {2t}{1+t} \cdot \frac {1-t^2}{1+t^2} = \frac {2t(1-t)}{1+t^2} \end{aligned}

And we have

1 A B + 1 A D 1 A C + 1 A E = 1 1 t + 1 t 1 + t 2 t + 1 + t 2 2 t ( 1 t ) = 1 t + t t ( 1 t ) 1 t 2 + 1 + t 2 2 t ( 1 t ) = 1 t ( 1 t ) 1 t ( 1 t ) = 1 \begin{aligned} \frac {\frac 1{AB}+\frac 1{AD}}{\frac 1{AC}+\frac 1{AE}} & = \frac {\frac 1{1-t}+\frac 1t}{\frac {1+t}{2t} + \frac {1+t^2}{2t(1-t)}} = \frac {\frac {1-t+t}{t(1-t)}}{\frac {1-t^2+1+t^2}{2t(1-t)}} = \frac {\frac 1{t(1-t)}}{\frac 1{t(1-t)}} = \boxed 1 \end{aligned}

Dan Czinege
Apr 15, 2020

Let AB, BC, CA be c, a, b respectively. Then we can find lenght AE using these lenghts (we write area of triangle ABC with lenghts b, c and then with lenghts a, AE): A E = b c a |AE|=\frac{bc}{a} . And also we can write lenght AD using these lenghts: A D = a + b c 2 |AD|=\frac{a+b-c}{2} . Now we just put these into the fraction we want to calculate: 1 c + 2 a + b c 1 b + a b c \frac{\frac{1}{c}+\frac{2}{a+b-c}}{\frac{1}{b}+\frac{a}{bc}} and simplify to this: a b + b 2 + b c a 2 c 2 + a b + b c \frac{ab+b^2+bc}{a^2-c^2+ab+bc} now we can simplify this fruthermore using ( a 2 c 2 = b 2 a^2-c^2=b^2 ) pythagorean theorem : a b + b 2 + b c b 2 + a b + b c = 1 \frac{ab+b^2+bc}{b^2+ab+bc}=1 .

Let radius of circle be r r and 2 α 2\alpha is the angle as shown. These two parameters define this figure.

A D = r AD = r

C F = r tan α CF = r\text{ tan }\alpha\, and A F = r A C = r ( 1 + tan α ) \,AF = r\newline\Rightarrow AC = r(1 + \text{tan }\alpha)

Also O F A C , O G C E OF\perp AC\,,\,OG\perp CE\, and G O F = 2 α A C E = 2 α \,\angle GOF = 2\alpha \Rightarrow \angle ACE = 2\alpha

So, A E = A C sin ( 2 α ) = r ( 1 + tan α ) sin ( 2 α ) AE = AC\text{ sin}(2\alpha) = r(1 + \text{tan }\alpha)\text{ sin}(2\alpha) and A B = A C tan ( 2 α ) = r ( 1 + tan α ) tan ( 2 α ) \newline AB = AC\text{ tan}(2\alpha) = r(1 + \text{tan }\alpha)\text{ tan}(2\alpha)

Writing numerator and denominator separately to avoid complexity in writing.

Numerator :

1 A B \Large\frac{1}{AB} + + 1 A D \Large\frac{1}{AD} = = 1 r ( 1 + tan α ) tan ( 2 α ) \Large\frac{1}{r(1 + \text{tan }\alpha)\text{ tan}(2\alpha)} + + 1 r \Large\frac{1}{r}

= 1 r ( 1 + tan α ) ( 1 tan ( 2 α ) \hspace{45pt} = \Large\frac{1}{r(1 + \text{tan }\alpha)}\Bigg(\frac{1}{\text{tan}(2\alpha)} + + tan α + 1 ) \text{tan }\alpha + 1\Bigg)

= 1 r ( 1 + t ) ( 1 t 2 2 t \hspace{45pt} = \Large\frac{1}{r(1 + t)}\Bigg(\frac{1 - t^2}{2t} + t + 1 ) [ t = tan α ] +\, t + 1\Bigg)\hspace{50pt} [t = \text{tan }\alpha]

= 1 r ( 1 + t ) ( t 2 + 2 t + 1 2 t ) \hspace{45pt} = \Large\frac{1}{r(1 + t)}\Bigg(\frac{t^2 + 2t + 1}{2t}\Bigg) = = t + 1 2 r t \Large\frac{t+1}{2rt}

Denominator :

1 A C \Large\frac{1}{AC} + + 1 A E \Large\frac{1}{AE} = = 1 r ( 1 + tan α ) \Large\frac{1}{r(1 + \text{tan }\alpha)} + + 1 r ( 1 + tan α ) sin ( 2 α ) \Large\frac{1}{r(1 + \text{tan }\alpha)\text{ sin}(2\alpha)}

= 1 r ( 1 + t ) \hspace{45pt} = \Large\frac{1}{r(1 + t)} ( 1 + 1 + t 2 2 t ) \Bigg(1 + \Large\frac{1 + t^2}{2t}\Bigg)

= 1 r ( 1 + t ) \hspace{45pt} = \Large\frac{1}{r(1 + t)} ( t 2 + 2 t + 1 2 t ) \Bigg(\Large\frac{t^2 + 2t + 1}{2t}\Bigg)

= t + 1 2 r t \hspace{45pt} = \Large\frac{t+1}{2rt}

We get Numerator = = Denominator which means Numerator Denominator \Large\frac{\text{Numerator}}{\text{Denominator}} = 1 = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...