Find the value for this expression

Algebra Level 3

If a b = 2 1 \dfrac ab =\sqrt2 - 1 , simplify a 3 + 2 a 2 b + b 3 a b ( a + 3 b ) \dfrac{a^3+ 2a^2b+ b^3}{ab(a+3b)} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let x = 2 1 x = \sqrt{2} - 1 . Then a = b x a = bx , and the fraction in question becomes

b 3 x 3 + 2 b 3 x 2 + b 3 b 3 x ( x + 3 ) = x 3 + 2 x 2 + 1 x ( x + 3 ) \dfrac{b^{3}x^{3} + 2b^{3}x^{2} + b^{3}}{b^{3}x(x + 3)} = \dfrac{x^{3} + 2x^{2} + 1}{x(x + 3)} ,

where b 3 0 b^{3} \ne 0 was cancelled out. This last expression can then be written as

x 2 ( x + 2 ) + 1 x ( x + 3 ) = ( 3 2 2 ) ( 2 + 1 ) + 1 ( 2 1 ) ( 2 + 2 ) = ( 2 1 ) + 1 2 = 1 \dfrac{x^{2}(x + 2) + 1}{x(x + 3)} = \dfrac{(3 - 2\sqrt{2})(\sqrt{2} + 1) + 1}{(\sqrt{2} - 1)(\sqrt{2} + 2)} = \dfrac{(\sqrt{2} - 1) + 1}{\sqrt{2}} = \boxed{1} .

Goh Choon Aik
Jun 22, 2016

Let m m be the solution of the expression given.

a 3 + 2 a 2 b + b 3 a b ( a + 3 b = m \frac {a^3 + 2a^2 b + b^3}{ab(a+3b} = m

Manipulating, we get

a 3 + 2 a 2 b + b 3 = m a b ( a + 3 b ) a^3 + 2a^2 b + b^3 = mab(a+3b)

a 3 + 2 a 2 b + b 3 + a b ( a + 3 b ) = m a b ( a + 3 b ) + a b ( a + 3 b ) a^3 + 2a^2 b + b^3 + ab(a+3b) = mab(a+3b) + ab(a+3b)

a 3 + 3 a 2 b + 3 a b 2 + b 3 = ( m + 1 ) a b ( a + b + 2 b ) a^3 + 3a^2 b + 3ab^2 + b^3 = (m+1)ab(a+b+2b)

( a + b ) 3 = ( m + 1 ) a b ( a + b + 2 b ) (a + b)^3 = (m+1)ab(a+b+2b)

From the given equation,

a b = 2 1 \frac {a}{b} = \sqrt 2 -1

a = b 2 b a = b \sqrt 2 - b

a + b = b 2 1 a + b = b \sqrt 2 --------- \boxed {1}

( a + b ) 3 = 2 2 b 3 (a + b)^3 = 2 \sqrt 2 b^3

Equating both equations,

( m + 1 ) a b ( a + b + 2 b ) = 2 2 b 3 (m+1)ab(a+b+2b) = 2 \sqrt 2 b^3

a b ( m + 1 ) ( a + b + 2 b ) = 2 2 b 3 ab(m+1)(a+b+2b) = 2 \sqrt 2 b^3

Substituting in 1 \boxed {1} ,

a b ( m + 1 ) ( b 2 + 2 b ) = 2 2 b 3 ab(m+1)(b \sqrt 2+2b) = 2 \sqrt 2 b^3

a b 2 ( m + 1 ) ( 2 + 2 ) = 2 2 b 3 ab^2(m+1)(\sqrt 2+2) = 2 \sqrt 2 b^3

a ( m + 1 ) ( 2 + 2 ) = 2 2 b a(m+1)(\sqrt 2+2) = 2 \sqrt 2 b

a b × ( m + 1 ) = 2 2 2 + 2 \frac {a}{b} \times (m+1) = \frac {2 \sqrt 2}{\sqrt 2+2}

a b × ( m + 1 ) = 2 2 2 + 2 \frac {a}{b} \times (m+1) = \frac {2 \sqrt 2}{\sqrt 2+2}

m + 1 = 2 2 2 + 2 ÷ a b m+1 = \frac {2 \sqrt 2}{\sqrt 2+2} \div \frac {a}{b}

Rationalizing the surd fraction,

m + 1 = 2 2 ( 2 2 ) ( 2 + 2 ) ( 2 2 ) ÷ a b m+1 = \frac {2 \sqrt 2(\sqrt 2-2)}{(\sqrt 2+2)(\sqrt 2-2)} \div \frac {a}{b}

m + 1 = 2 2 ( 2 2 ) 2 ) ÷ a b m+1 = \frac {2 \sqrt 2(\sqrt 2-2)}{2)} \div \frac {a}{b}

m + 1 = 2 ( 2 2 ) ÷ 2 1 m+1 = \sqrt 2(\sqrt 2-2) \div \sqrt 2 -1

m + 1 = 2 ( 2 1 ) ÷ 2 1 m+1 = 2 (\sqrt 2 -1) \div \sqrt 2 -1

m + 1 = 2 m+1 = 2

Therefore, m = 1 \boxed {m =1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...