An algebra problem by Aly Ahmed

Algebra Level 2

{ 6 0 m = 5 6 0 n = 3 \begin{cases} 60^m=5 \\ 60^n=3 \end{cases}

Given the above, find 1 2 n / ( 1 m ) 12^{n/(1-m) } .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 11, 2020

6 0 m = 5 Given 60 6 0 m = 60 5 6 0 1 m = 12 Raise both sides to a power of 1 1 m 1 2 1 1 m = 60 Raise both sides to a power of n 1 2 n 1 m = 6 0 n = 3 It is given that 6 0 n = 3 \begin{aligned} 60^m & = 5 & \small \blue{\text{Given}} \\ \frac {60}{60^m} & = \frac {60}5 \\ 60^{1-m} & = 12 & \small \blue{\text{Raise both sides to a power of }\frac 1{1-m}} \\ \implies 12^{\frac 1{1-m}} & = 60 & \small \blue{\text{Raise both sides to a power of }n} \\ 12^{\frac n{1-m}} & = 60^n = \boxed 3 & \small \blue{\text{It is given that }60^n = 3} \end{aligned}

From the given equations we get m = ln 5 ln 60 1 m = ln 12 ln 60 , m=\dfrac{\ln 5}{\ln 60}\implies 1-m=\dfrac{\ln 12}{\ln 60},

n = ln 3 ln 60 n=\dfrac{\ln 3}{\ln 60}

n 1 m = ln 3 ln 12 \implies \dfrac{n}{1-m}=\dfrac{\ln 3}{\ln 12}

1 2 n 1 m = 3 \implies 12^{\frac{n}{1-m}}=\boxed 3 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...