A calculus problem by Aly Ahmed

Calculus Level 2

0 15 0 10 ( x 2 + y 2 ) d y d x = ? \int_0^{15} \int_0^{10}\left(x^2+y^2\right)\ dy\ dx = \ ?


The answer is 16250.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

0 15 0 10 ( x 2 + y 2 ) d y d x = 0 15 ( 10 x 2 + 1000 3 ) d x = 10 × 1 5 3 3 + 15 × 1 0 3 3 = 16250 \displaystyle \int_0^{15} \displaystyle \int_0^{10} (x^2+y^2)dydx=\displaystyle \int_0^{15} (10x^2+\frac{1000}{3})dx=\dfrac{10\times 15^3}{3}+\dfrac{15\times 10^3}{3}=\boxed {16250} .

Chew-Seong Cheong
Apr 29, 2020

0 15 0 10 ( x 2 + y 2 ) d y d x = 0 15 [ x 2 y + y 3 3 ] 0 10 d x = 0 15 ( 10 x 2 + 1000 3 ) d x = 10 x 3 3 + 1000 x 3 0 15 = 11250 + 5000 = 16250 \begin{aligned} \int_0^{15} \int_0^{10} \left(x^2 + y^2\right) dy \ dx & = \int_0^{15} \left[x^2y + \frac {y^3}3 \right]_0^{10} \ dx \\ & = \int_0^{15} \left(10 x^2 + \frac {1000}3 \right) \ dx \\ & = \frac {10x^3}3 + \frac {1000x}3 \ \bigg|_0^{15} \\ & = 11250 + 5000 \\ & = \boxed{16250} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...