Find the value of 2

Algebra Level 3

( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) ( 1 1 201 8 2 ) = ? \left(1-\frac 1{2^2}\right)\left(1-\frac 1{3^2}\right)\left(1-\frac 1{4^2}\right)\cdots \left(1-\frac 1{2018^2}\right) = ?


The answer is 0.5002.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zico Quintina
Jun 19, 2018

( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) . . . ( 1 1 201 8 2 ) = ( 1 1 2 ) ( 1 + 1 2 ) ( 1 1 3 ) ( 1 + 1 3 ) ( 1 1 4 ) ( 1 + 1 4 ) . . . ( 1 1 2018 ) ( 1 + 1 2018 ) = ( 1 1 2 ) ( 1 1 3 ) ( 1 1 4 ) . . . . ( 1 1 2018 ) × ( 1 + 1 2 ) ( 1 + 1 3 ) ( 1 + 1 4 ) . . . ( 1 + 1 2018 ) = ( 1 2 ) ( 2 3 ) ( 3 4 ) . . . ( 2017 2018 ) × ( 3 2 ) ( 4 3 ) ( 5 4 ) . . . ( 2019 2018 ) = 1 2018 × 2019 2 = 2019 4036 0.5002477701 \begin{aligned} &\left( 1 - \dfrac{1}{2^2} \right) \left( 1 - \dfrac{1}{3^2} \right) \left( 1 - \dfrac{1}{4^2} \right) ... \left( 1 - \dfrac{1}{2018^2} \right) \\ \\ = \ &\left( 1 - \dfrac{1}{2} \right) \left( 1 + \dfrac{1}{2} \right) \left( 1 - \dfrac{1}{3} \right) \left( 1 + \dfrac{1}{3} \right) \left( 1 - \dfrac{1}{4} \right) \left( 1 + \dfrac{1}{4} \right) ... \left( 1 - \dfrac{1}{2018} \right) \left( 1 + \dfrac{1}{2018} \right) \\ \\ = \ &\left( 1 - \dfrac{1}{2} \right) \left( 1 - \dfrac{1}{3} \right) \left( 1 - \dfrac{1}{4} \right) .... \left( 1 - \dfrac{1}{2018} \right) \ \times \ \left( 1 + \dfrac{1}{2} \right) \left( 1 + \dfrac{1}{3} \right) \left( 1 + \dfrac{1}{4} \right) ... \left( 1 + \dfrac{1}{2018} \right) \\ \\ = \ &\left( \dfrac{1}{2} \right) \left( \dfrac{2}{3} \right) \left( \dfrac{3}{4} \right) ... \left( \dfrac{2017}{2018} \right) \ \times \ \left( \dfrac{3}{2} \right) \left( \dfrac{4}{3} \right) \left( \dfrac{5}{4} \right) ... \left( \dfrac{2019}{2018} \right) \\ \\ = \ &\dfrac{1}{2018} \times \dfrac{2019}{2} \\ \\ = \ &\dfrac{2019}{4036} \approx \boxed{0.5002477701} \end{aligned}

Chew-Seong Cheong
Jun 19, 2018

P = ( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) ( 1 1 201 8 2 ) = k = 2 2018 ( 1 1 k 2 ) = k = 2 2018 ( k 2 1 k 2 ) = k = 2 2018 ( ( k 1 ) ( k + 1 ) k 2 ) = ( 2017 ! × 2019 ! 2 × ( 2018 ! ) 2 ) = 2019 4036 0.5002 \begin{aligned} P & = \left(1-\frac 1{2^2}\right)\left(1-\frac 1{3^2}\right)\left(1-\frac 1{4^2}\right)\cdots \left(1-\frac 1{2018^2}\right) \\ & = \prod_{k=2}^{2018} \left(1 - \frac 1{k^2}\right) \\ & = \prod_{k=2}^{2018} \left(\frac {k^2-1}{k^2}\right) \\ & = \prod_{k=2}^{2018} \left(\frac {(k-1)\color{#3D99F6}(k+1)}{k^2}\right) \\ & = \left(\frac {2017! \times \color{#3D99F6}2019!}{{\color{#3D99F6}2}\times (2018!)^2}\right) \\ & = \frac {2019}{4036} \\ & \approx \boxed{0.5002} \end{aligned}

Best method Sir!

Vishal Kumar - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...