Find the value of

Algebra Level 3

K = ( 1 0 4 + 324 ) ( 2 2 4 + 324 ) ( 3 4 4 + 324 ) ( 4 6 4 + 324 ) ( 5 8 4 + 324 ) ( 4 4 + 324 ) ( 1 6 4 + 324 ) ( 2 8 4 + 324 ) ( 4 0 4 + 324 ) ( 5 2 4 + 324 ) K = \frac { (10^{ 4 }+324)(22^{ 4 }+324)(34^{ 4 }+324)(46^{ 4 }+324)(58^{ 4 }+324) }{ (4^{ 4 }+324)(16^{ 4 }+324)(28^{ 4 }+324)(40^{ 4 }+324)(52^{ 4 }+324)}


The answer is 373.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ruslan Abdulgani
Jan 20, 2015

We can write x^4+324) = (x2 + 6x + 18)(x2- 6x + 18) =(x(x+6) + 18)(x(x-6) + 18).

So ((10(16)+ 18)(10(4)+ 18)(22(28)+ 18)(22(16)+ 18)…(46(52) + 18)(58(64) + 18)(58(52) + 18))/((4(10)+ 18)(4(-2)+ 18)(16(22)+ 18)(16(10)+ 18)……(52(58) + 18)(52(46) + 18))

Most of the factors are cancelled each other except, ((58(64) + 18))/((4(-2)+ 18) ) = 373

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...