Find k k

Geometry Level 2

Find k k .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Marvin Kalngan
May 5, 2020

A B = 12 AB = 12

A D = 15 AD = 15

E C = k EC = k

Project E E orthogonally onto A C AC , its image being point F F .

B A E = F A E = θ \angle BAE=\angle FAE=\theta

A B E A F E \triangle ABE \cong \triangle AFE

A F = A B = 12 AF = AB = 12

F D = A D A F = 15 12 = 3 FD = AD - AF = 15 - 12 = 3

Since E F EF is the altitude on the hypotenuse of right triangle A E D AED , E F EF is the geometric mean of A F AF and F D FD .

E F 2 = ( A F ) ( F D ) EF^2 = (AF)(FD)

E F 2 = ( 12 ) ( 3 ) EF^2 = (12)(3)

E F = 6 EF = 6

B E = E F = 6 BE = EF = 6

tan θ = B E A B = 1 2 \tan \theta = \dfrac{BE}{AB} =\dfrac{1}{2}

tan 2 θ = 2 tan θ 1 tan 2 θ = 2 × 1 2 1 ( 1 2 ) 2 = 4 3 \tan 2\theta=\dfrac{2\tan \theta}{1-\tan^2 \theta}=\dfrac{2 \times \dfrac{1}{2}}{1-\left(\dfrac{1}{2}\right)^2}=\dfrac{4}{3}

tan 2 θ = 6 + k 12 = 4 3 \tan 2\theta=\dfrac{6+k}{12}=\dfrac{4}{3}

6 + k 12 = 4 3 \dfrac{6+k}{12}=\dfrac{4}{3}

48 = 18 + 3 k 48=18+3k

k = 10 \boxed{k=10}

Chew-Seong Cheong
Apr 29, 2020

Let B A C = C A D = θ \angle BAC = \angle CAD =\theta . Then A C = 12 cos θ AC = \dfrac {12}{\cos \theta} and:

A C cos θ = A D 12 cos 2 θ = 15 cos 2 θ = 12 15 = 4 5 cos θ = 2 5 cos ( 2 θ ) = 2 × 4 5 1 = 3 5 \begin{aligned} \frac {AC}{\cos \theta} & = AD \\ \frac {12}{\cos^2 \theta} & = 15 \\ \implies \cos^2 \theta & = \frac {12}{15} = \frac 45 \\ \cos \theta & = \frac 2{\sqrt 5} \\ \cos (2\theta) & = 2\times \frac 45 - 1 = \frac 35 \end{aligned}

Therefore, k = B E B C = 12 tan 2 θ 12 tan θ = 12 × 4 3 12 × 1 2 = 10 k = BE-BC = 12 \tan 2\theta - 12 \tan \theta = 12 \times \dfrac 43 - 12 \times \dfrac 12 = \boxed{10} .

Let the two equal angles be α α each, length of the bisector line be y y , and length of the base of the triangle whose one segment is k k be x + k x+k . Then

cos α = 12 y = y 15 y 2 = 180 \cos α=\dfrac{12}{y}=\dfrac{y}{15}\implies y^2=180 . So, 180 = 144 + x 2 x = 6 180=144+x^2\implies x=6 .

Hence, tan α = 6 12 = 0.5 , tan 2 α = 6 + k 12 = 2 tan α 1 tan 2 α = 4 3 k = 16 6 = 10 \tan α=\dfrac{6}{12}=0.5, \tan 2α=\dfrac{6+k}{12}=\dfrac{2\tan α}{1-\tan^2 α}=\dfrac{4}{3}\implies k=16-6=\boxed {10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...