find the value of n

Algebra Level 3

log b ( log b ( log b ( x ) ) ) = log c ( log c ( log c ( x ) ) ) \log_b(\log_b(\log_b(x))) = \log_c(\log_c(\log_c(x)))

Given that b = 2 8 b=2^8 , c = 2 16 c=2^{16} , x > b 2 x > b^2 , and x = 2 n x=2^n , find n n .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

log b ( log b ( log b x ) ) = log c ( log c ( log c x ) ) log b ( log b ( log 2 x 8 ) ) = log c ( log c ( log 2 x 16 ) ) log b ( log 2 ( log 2 x ) 3 8 ) = log c ( log 2 ( log 2 x ) 4 16 ) log 2 ( log 2 ( log 2 x ) 3 ) 3 8 = log 2 ( log 2 ( log 2 x ) 4 ) 4 16 2 log 2 ( log 2 ( log 2 x ) 3 ) 6 = log 2 ( log 2 ( log 2 x ) 4 ) 4 2 log 2 ( log 2 ( log 2 x 8 ) ) = log 2 ( log 2 ( log 2 x 16 ) ) + 2 log 2 ( log 2 ( log 2 x 8 ) 2 ) = log 2 ( 4 log 2 ( log 2 x 16 ) ) log 2 ( log 2 x 8 ) 2 = 4 log 2 ( log 2 x 16 ) 2 2 = 4 1 log 2 x 8 = 4 log 2 x 16 = 2 log 2 x = 32 n = 32 \begin{aligned} \log_b(\log_b(\log_b x)) & = \log_c(\log_c(\log_c x)) \\ \log_b \left(\log_b \left(\frac {\log_2 x}8 \right) \right) & = \log_c \left(\log_c \left(\frac {\log_2 x}{16} \right) \right) \\ \log_b \left(\frac {\log_2(\log_2 x) - 3}8 \right) & = \log_c \left(\frac {\log_2(\log_2 x)-4}{16} \right) \\ \frac {\log_2(\log_2(\log_2 x) - 3)-3}8 & = \frac {\log_2(\log_2(\log_2 x)-4)-4}{16} \\ 2\log_2(\log_2(\log_2 x) - 3)-6 & = \log_2(\log_2(\log_2 x)-4)-4 \\ 2\log_2 \left(\log_2 \left(\frac {\log_2 x}8 \right)\right) & = \log_2 \left(\log_2 \left(\frac {\log_2 x}{16}\right) \right) +2 \\ \log_2 \left(\log_2 \left(\frac {\log_2 x}8 \right)^2 \right) & = \log_2 \left(4\log_2 \left(\frac {\log_2 x}{16}\right) \right) \\ \log_2 \left(\frac {\log_2 x}8 \right)^2 & = 4 \log_2 \left(\frac {\log_2 x}{16}\right) \\ \implies 2^2 & = 4 \cdot 1 & \small \blue{\implies \frac {\log_2 x}8 = 4 \implies \frac {\log_2 x}{16} = 2} \\ \implies \log_2 x & = 32 \\ \implies n & = \boxed{32} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...