Find the value of the product

Algebra Level 3

Suppose that 4 X 1 = 5 5 X 2 = 6 6 X 3 = 7 12 6 X 123 = 127 12 7 X 124 = 128 \begin{matrix}\\& 4^{X_1}=5\\& 5^{X_2}=6\\& 6^{X_3}=7\\& \vdots \\& \vdots \\& 126^{X_{123}}=127 \\& 127^{X_{124}}=128\end{matrix}

What is the value of the product i = 1 124 X i = X 1 X 2 X 3 X 123 X 124 \displaystyle \prod_{i=1}^{124}X_i=X_1X_2X_3\cdots X_{123}X_{124}


this problem is a part of the set Problems for everyone!!!

3.5 3.67 3.4 3.51 3.6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S P
May 1, 2018

4 X 1 = 5 ( 4 X 1 ) X 2 = 5 X 2 = 6 ( 4 X 1 X 2 ) X 3 = 6 X 3 = 7 ( 4 X 1 X 2 X 3 X 122 ) X 123 = 127 ( 4 X 1 X 2 X 3 X 123 ) X 124 = 128 \begin{matrix}4^{X_1}=5 \\ (4^{X_1})^{X_2}=5^{X_2}=6 \\ (4^{X_1X_2})^{X_3}=6^{X_3}=7 \\ \vdots \\ \vdots \\ \vdots \\ (4^{X_1X_2X_3\cdots \cdots X_{122}})^{X_{123}}=127 \\ (4^{X_1X_2X_3\cdots \cdots X_{123}})^{X_{124}}=128 \end{matrix}

Therefore, 2 2 ( X 1 X 2 X 3 X 123 X 124 ) = 2 7 2^{2(X_1X_2X_3\cdots \cdots X_{123}X_{124})}=2^7

Since, the bases are equal...

So, 2 X 1 X 2 X 3 X 123 X 124 = 7 2X_1X_2X_3\cdots \cdots X_{123}X_{124}=7

i = 1 124 X i = X 1 X 2 X 3 X 123 X 124 = 7 2 = 3.5 \implies \displaystyle \prod^{124}_{i=1}X_i=X_1X_2X_3\cdots \cdots X_{123}X_{124}=\dfrac{7}{2}=\boxed{3.5}

Naren Bhandari
May 1, 2018

Note that ( k + 3 ) X k = ( k + 4 ) X k = log ( k + 4 ) log ( k + 3 ) , k Z + \small (k+3)^{X_k} = (k+4) \implies X_k = \dfrac{\log(k+4)} {\log(k+3)}, k\in\mathbb Z^+ P = k = 1 123 X k = k = 1 123 log ( k + 4 ) log ( k + 3 ) P = 1 log ( 4 ) × log ( 128 ) × k = 1 123 log ( k + 4 ) log ( k + 4 ) Telescoping product = 7 2 = 3.5 P = \prod_{k=1}^{123} X_k = \prod_{k=1}^{123} \dfrac{\log\,(k+4)}{\log\,(k+3)} \\P = \dfrac{1}{\log(4)} \times\log(128) \times \underbrace{\prod_{k=1}^{123}\dfrac{\log(k+4)}{\log(k+4)}}_{\text{Telescoping product}}= \dfrac{7}{2} = \boxed{3.5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...