Find the value of the sum below

Algebra Level 3

1 1 + 1 1 + 2 + 1 1 + 2 + 3 + 1 1 + 2 + 3 + 4 + + 1 1 + 2 + 3 + + 2017 \dfrac11 + \dfrac1{1 + 2} + \dfrac1{1 + 2 + 3} + \dfrac1{1 + 2 + 3 + 4} + \cdots+ \dfrac1{1 + 2 + 3 + \cdots+ 2017}

If the sum above simplifies to a b \dfrac ab , where a a and b b are coprime positive integers, then find a + b a + b .


The answer is 3026.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Zuhair
Mar 21, 2017

= n = 1 2017 1 n ( n + 1 ) 2 \large \displaystyle = \sum_{n=1}^{2017} \frac{1}{\frac{n(n+1)}{2}}

= 2 n = 1 2017 1 n ( n + 1 ) \large \displaystyle = 2\sum_{n=1}^{2017} \frac{1}{n(n+1)}

= 2 n = 1 2017 1 n 1 n + 1 \large \displaystyle = 2\sum_{n=1}^{2017} \frac{1}{n} - \frac{1}{n+1}

= 2 ( 1 1 2018 ) \large \displaystyle = 2 \Big (1 - \frac{1}{2018} \Big)

= 2017 1009 \large \displaystyle = \frac{2017}{1009}

Making the answer 3026 \color{#3D99F6} \boxed{ \large \displaystyle 3026 } .

My solution from the reports! Thank you! :)

Guilherme Niedu - 4 years, 2 months ago

Log in to reply

Identified well

Md Zuhair - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...