Find the value of the variable.

Algebra Level 2

Find the sum of all real number(s) x x such that: 2 x + 3 x + 6 x 4 x 9 x = 1 2^x+3^x+6^x-4^x-9^x=1

Problem is not original


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Tom Engelsman
May 8, 2019

Hey there, Hana.....here's a solution for yah:

Let u = 2 x , v = 3 x u = 2^{x}, v = 3^{x} such that we arrive at the transformation:

2 x + 3 x + 6 x 4 x 9 x = u + v + u v u 2 v 2 = 1 2^x + 3^x + 6^x - 4^x - 9^x = u + v + uv - u^2 - v^2 = 1 (i)

Solving the quadratic (i) for u u yields: 0 = u 2 + ( 1 + v ) u + ( v 2 v + 1 ) u = ( 1 + v ) ± ( 1 + v ) 2 4 ( 1 ) ( v 2 v + 1 ) 2 = ( 1 + v ) ± 3 v 2 + 6 v 3 2 = ( 1 + v ) ± 3 ( v 1 ) 2 2 0 = u^2 + (1+v)u + (v^2 - v + 1) \Rightarrow u = \frac{-(1+v) \pm \sqrt{(1+v)^2 - 4(1)(v^2 - v + 1)}}{2} = \frac{-(1+v) \pm \sqrt{-3v^2 + 6v - 3}}{2} = \frac{-(1+v) \pm \sqrt{-3(v-1)^2}}{2} (ii).

The only way (ii) can yield a solution u R u \in \mathbb{R} occurs iff v = 3 x = 1 x = 0 . v = 3^x = 1 \Rightarrow \boxed{x = 0}.

@Tom Engelsman , thank you so much :) , nice.

Hana Wehbi - 2 years, 1 month ago
David Vreken
May 10, 2019

2 x + 3 x + 6 x 4 x 9 x = 1 2^x + 3^x + 6^x - 4^x - 9^x = 1 rearranges to ( 2 x 3 x ) 2 + ( 2 x 1 ) ( 3 x 1 ) = 0 (2^x - 3^x)^2 + (2^x - 1)(3^x - 1) = 0 .

When x > 0 x > 0 , both 2 x > 1 2^x > 1 and 3 x > 1 3^x > 1 , so ( 2 x 3 x ) 2 + ( 2 x 1 ) ( 3 x 1 ) > 0 (2^x - 3^x)^2 + (2^x - 1)(3^x - 1) > 0 ; and when x < 0 x < 0 , both 2 x < 1 2^x < 1 and 3 x < 1 3^x < 1 , so ( 2 x 3 x ) 2 + ( 2 x 1 ) ( 3 x 1 ) > 0 (2^x - 3^x)^2 + (2^x - 1)(3^x - 1) > 0 .

Therefore, x = 0 x = 0 can be the only solution to the given equation.

@David Vreken , thank you for sharing a nice solution

Hana Wehbi - 2 years, 1 month ago
Mark Hennings
May 8, 2019

Note that ( 3 x 1 ) ( 2 x 1 ) 0 (3^x-1)(2^x-1) \ge 0 for all real x x , with equality precisely when x = 0 x=0 . Thus 6 x + 1 2 x + 3 x 6^x + 1 \; \ge \; 2^x+ 3^x for all real x x , with equality precisely when x = 0 x=0 . In addition 1 2 ( 4 x + 9 x ) 4 x × 9 x = 6 x \tfrac12(4^x + 9^x) \; \ge \; \sqrt{4^x \times 9^x} \; = \; 6^x for all real x x , with equality precisely when 4 x = 9 x 4^x=9^x , namely when x = 0 x=0 . Thus 4 x + 9 x + 1 2 × 6 x + 1 = 6 x + ( 6 x + 1 ) 6 x + 3 x + 2 x 4^x + 9^x + 1 \; \ge \; 2 \times 6^x + 1 \; =\; 6^x + (6^x + 1) \; \ge \; 6^x + 3^x + 2^x for all real x x , with equality precisely when x = 0 x=0 . Thus the only solution to the equation 2 x + 3 x + 6 x 4 x 9 x = 1 2^x + 3^x + 6^x - 4^x - 9^x \; = \; 1 is x = 0 x=\boxed{0} .

@Mark Hennings , thank you for sharing a nice solution.

Hana Wehbi - 2 years, 1 month ago
Hana Wehbi
May 10, 2019

I am going to rewrite the equation 2 x + 3 x + 6 x 4 x 9 x = 1 2^x+3^x+6^x-4^x-9^x=1 as:

1 + 4 x + 9 x 2 x 3 x 6 x = 0 1+4^x+9^x-2^x-3^x-6^x=0 identified as equation A A

1 + ( 2 2 ) x + ( 3 2 ) x 2 x 3 x 6 x = 0 \implies 1+(2^2)^x+(3^2)^x-2^x-3^x-6^x=0

let p = 2 x and q = 3 x p= 2^x \text{ and }q=3^x then A A will become:

1 + p 2 + q 2 p q p q = 0 \implies 1+p^2+q^2-p-q-pq=0

2 + 2 p 2 + 2 q 2 2 p 2 q 2 p q = 0 \implies 2+2p^2+2q^2-2p-2q-2pq=0

1 + 1 + p 2 + p 2 + q 2 + q 2 2 p 2 q 2 p q = 0 \implies \textcolor{#D61F06}1+\textcolor{#3D99F6}1+\textcolor{#D61F06}{p^2}+p^2+\textcolor{#3D99F6}{q^2}+q^2\textcolor{#D61F06}{-2p}\textcolor{#3D99F6}{-2q}-2pq=0

( 1 p ) 2 + ( 1 q ) 2 + ( p q ) 2 = 0 \implies \textcolor{#D61F06}{(1-p)^2}+\textcolor{#3D99F6}{(1-q)^2}+(p-q)^2=0

1 p = 1 q = p q = 0 p = q = 1 2 x = 3 x = 1 \implies 1-p=1-q=p-q=0 \implies p=q=1 \implies 2^x=3^x=1

The only solution here that satisfies 2 x = 3 x = 1 2^x=3^x=1 is x = 0 \boxed {x=0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...