Find the value of x x

Geometry Level 3

sin 2 0 cos 5 0 = x sec 1 0 \large \sin 20^\circ \cos 50^\circ = x \sec 10^\circ If the real number x x satisfying the above equation is of the form a b \dfrac {\sqrt {a}}{b} , where a a and b b are integers , and a a is square-free, find a + b a+b .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sanath Balaji
Jun 1, 2016

sin(20).cos(50)=x.sec(10)

s i n ( 20 ) . s i n ( 40 ) = x s i n ( 80 ) sin(20).sin(40)=\frac { x }{ sin(80) }

s i n ( 20 ) . s i n ( 40 ) . s i n ( 80 ) = x W e K n o w T h a t , s i n ( θ ) . s i n ( 60 θ ) . s i n ( 60 + θ ) = s i n ( 3 θ ) 4 H e n c e x = s i n ( 60 ) / 4 x = 3 2 8 a + b = 11 sin(20).sin(40).sin(80)=x\\ We\quad Know\quad That,\\ sin(\theta ).sin(60-\theta ).sin(60+\theta )=\frac { sin(3\theta ) }{ 4 } \\ Hence\quad x=sin(60)/4\\ x=\frac { \sqrt [ 2 ]{ 3 } }{ 8 } \\ a+b=11

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...