Find the value of x in the problem #1

Geometry Level 2

Find the value of x x .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Syed Shahabudeen
Jan 6, 2018

Given D E DE = E C EC and A E = x AE = x

From the figure:

\bullet Consider the triangles Δ O D E \Delta ODE and Δ O C E \Delta OCE :

here \ast D E DE = E C EC

\ast O E OE = O E OE

\ast D O E = C O E = 90 \angle DOE=\angle COE={ 90 }^{ \circ }

This implies Δ O D E \Delta ODE \cong Δ O C E \Delta OCE

Therefore by congruent parts of congruent triangle ( C P C T ) (CPCT) O D OD = O C OC

\bullet Similarly, we consider the triangles Δ A O D \Delta AOD and Δ A O C \Delta AOC :

Here \ast O D OD = O C OC

\ast O A OA = O A OA

\ast A O D = A O C = 90 \angle AOD=\angle AOC={ 90 }^{ \circ }

This implies Δ A O D \Delta AOD \cong Δ A O C \Delta AOC

Therefore by congruent parts of congruent triangle ( C P C T ) (CPCT) A D AD = A C AC = 6 6

\bullet Now we check the similarity between two triangles Δ B E A \Delta BEA and Δ B D E \Delta BDE :

A E D E = B E D B = A B B E \frac { AE }{ DE } = \frac { BE }{ DB } = \frac { AB }{ BE }

we know that A B AB = A D + D B AD+DB = 6 + 2 6+2 = 8 8 (Since we know that A D = 6 AD = 6 from second proof)

By substituting the respective values of A B = 8 , B E = 4 , D B = 2 , A E = x AB =8 , BE = 4, DB =2 , AE = x

we get x D E = 4 2 = 8 4 \frac { x }{ DE } = \frac { 4 }{ 2 } = \frac { 8 }{ 4 }

this implies x D E = 2 \frac { x }{ DE } = 2 ; such that x = 2 ( D E ) x = 2(DE) ; Or D E = E C = x 2 DE = EC = \frac { x}{ 2 }

\bullet Now let us take A E B = θ \angle AEB = \theta so A E C = 180 θ \angle AEC = 180 - \theta

In Δ B E A \Delta BEA and Δ C E A \Delta CEA by applying law of cosines we get

cos θ = x 2 + 4 2 8 2 8 x \cos { \theta = \frac { { x }^{ 2 }+{ 4 }^{ 2 }-{ 8 }^{ 2 } }{ 8x } } ( 1 ) \longrightarrow \left( 1 \right) and cos ( 180 θ ) = E C 2 + x 2 6 2 2 E C x \cos { (180 - \theta) = \frac { { EC}^{ 2 }+{ x }^{ 2 }-{ 6 }^{ 2 } }{2\cdot EC\cdot x } } ( 2 ) \longrightarrow \left( 2 \right)

we know that cos ( 180 θ \cos (180 - \theta ) = - c o s ( θ ) cos(\theta) and by putting E C = x 2 EC = \frac { x}{ 2 } ( From the 3 rd proof)

we reform equation ( 2 ) (2) as cos ( θ ) = ( x 2 ) 2 + x 2 6 2 2 ( x 2 ) x ( 3 ) -\cos { (\theta ) } =\frac { { \left( \frac { x }{ 2 } \right) }^{ 2 }+{ x }^{ 2 }-{ 6 }^{ 2 } }{ 2\cdot \left( \frac { x }{ 2 } \right) \cdot x } \longrightarrow \left( 3 \right)

By adding equation 1 1 and 3 3 and on rearranging it we get a cubic equation in terms of x x i.e x 3 + 10 x 2 48 x 288 = 0 { x }^{ 3 }+10{ x }^{ 2 }-48x-288=0 on solving this equation

we get x = 6 \boxed{ x = 6} or A E = 6 \boxed{ AE = 6}

Ajit Athle
Jan 9, 2018

It is clear that triat triangles ADE & ACE are congruent and, therefore, AD=AC=6 units and AE is the angle bisector of <A. Hence, AB/AC=BE/EC or BE/EC=8/6 which yields, EC=3. Now, it is a simple matter of determining the angle bisector length which is given by: x²=bc(1-(a/(b+c)²) where a=7, b=6 & c=8. Just plug in the values and obtain x²=6x8(1-(7/14)²)=48x3/4=36 or x=6 units.

Pepper Mint
Jan 9, 2018

A D E A C E ( RHS ) , A D F A C F ( RHA ) . \bigtriangleup{ADE} \equiv \bigtriangleup{ACE} (\text{RHS}), \bigtriangleup{ADF} \equiv \bigtriangleup{ACF} (\text{RHA}).

Thus, B E : E C = 4 : 3. \overline{BE} : \overline{EC}=4 : 3.

When D G = a , 16 ( 2 + a ) 2 = 9 a 2 , a = 3 4 = E F . \overline{DG}=a, 16-(2+a)^2=9-a^2, a=\frac{3}{4}=\overline{EF}.

After some calculations, it is obvious that x = 6 . x=\boxed{6}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...