Find x 2 x^2

Geometry Level 3

A B C ABC is an equilateral triangle. Point D D in A B C \triangle ABC is such that B D C = 15 0 \angle BDC = 150^\circ , B D = 6 BD=6 , D C = 3 DC=3 , and A D = x AD=x . Find x 2 x^2 .


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nibedan Norman
Dec 15, 2019

Chew-Seong Cheong
Dec 15, 2019

Let the side length of A B C \triangle ABC be a a and the coordinates be B ( 0 , 0 ) B(0,0) , A ( a 2 , 3 a 2 ) A \left(\frac a2, \frac {\sqrt 3a}2\right) , and D ( u , v ) D(u,v) .

To find a a and hence the coordinates of A ( u , v ) A(u,v) , let D B C = θ \angle DBC = \theta and applying cosine rule on B C D \triangle BCD :

a 2 = 6 2 + 3 2 2 ( 6 ) ( 3 ) ( 3 2 ) = 45 + 18 3 a^2 = 6^2 + 3^2 - 2(6)(3) \left(-\dfrac {\sqrt 3}2\right) = 45 + 18\sqrt 3

To find the coordinates of D ( u , v ) D(u,v) , let D B C = θ \angle DBC = \theta and applying sine rule on B C D \triangle BCD :

sin θ 3 = sin ( 15 0 ) a = 1 2 a sin θ = 3 2 a u = 6 cos θ = 6 1 9 4 a 2 = 3 a 4 a 2 9 = 3 a 4 ( 45 + 18 3 ) 9 = 9 a 19 + 8 3 = 9 a ( 4 + 3 ) 2 9 ( 4 + 3 ) a a u = 36 + 9 3 v = 6 sin θ = 6 ( 3 2 a ) = 9 a a v = 9 \begin{aligned} \frac {\sin \theta}3 & = \frac {\sin (150^\circ)}a = \frac 1{2a} \\ \implies \sin \theta & = \frac 3{2a} \\ \implies u & = 6\cos \theta = 6\sqrt{1-\frac 9{4a^2}} = \frac 3a \sqrt{4a^2 - 9} \\ & = \frac 3a \sqrt{4(45 + 18\sqrt 3)-9} = \frac 9a \sqrt{19+8\sqrt 3} \\ & = \frac 9a \sqrt{(4+\sqrt 3)^2} \frac {9(4+\sqrt 3)}a \\ \implies au & = 36 + 9\sqrt 3 \\ v & = 6\sin \theta = 6\left(\frac 3{2a}\right) = \frac 9a \\ \implies av & = 9 \end{aligned}

By Pythagorean theorem :

x 2 = ( u a 2 ) 2 + ( v 3 a 2 ) 2 = u 2 a u + a 2 4 + v 2 3 a v + 3 a 2 4 = u 2 + v 2 a u 3 a v + a 2 = 6 2 ( cos 2 θ + sin 2 θ ) 36 9 3 9 3 + 45 + 18 3 = 36 36 9 3 9 3 + 45 + 18 3 = 45 \begin{aligned} x^2 & = \left(u-\frac a2\right)^2 + \left(v-\frac {\sqrt 3a}2\right)^2 \\ & = u^2 - au+\frac {a^2}4 + v^2 - \sqrt 3av + \frac {3a^2}4 \\ & = u^2 + v^2 - au - \sqrt 3 av + a^2 \\ & = 6^2(\cos^2 \theta + \sin^2 \theta) - 36-9\sqrt 3 - 9\sqrt 3 + 45+18\sqrt 3 \\ & = 36 - 36 - 9\sqrt 3 - 9\sqrt 3 + 45 + 18\sqrt 3 \\ & = \boxed {45} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...