Can you find the volume of a sphere?

Geometry Level 2

We have five spheres like this:

The problem:

Find the volume of a sphere.

Hints:

1- All the spheres have the same volume.

2- Line segments link between the center of spheres

λ = 3 c m φ = 4 c m V s p h e r e = 4 3 π r 3 \lambda =\quad 3cm\\ \\ \varphi =\quad 4cm\\ \\ { V }_{ sphere }=\quad \frac { 4 }{ 3 } \pi { r }^{ 3 }


The answer is 8.18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hammadi Agharrass
Mar 31, 2016

We'll draw a triangle (ABC):

And we will use Pythagoras theorem to find BC: B C 2 = A B 2 + A C 2 A n d w e k n o w : A B = 3 c m a n d A C = 4 c m T h e r e f o r e : B C 2 = 3 2 + 4 2 B C 2 = 9 + 16 B C 2 = 25 B C = 25 B C = 5 { BC }^{ 2 }={ AB }^{ 2 }\quad +\quad { AC }^{ 2 }\\ And\quad we\quad know:\quad AB=3cm\quad and\quad AC=4cm\\ Therefore:\\ BC^{ 2 }=\quad { 3 }^{ 2 }\quad +\quad { 4 }^{ 2 }\\ BC^{ 2 }=\quad 9\quad +\quad 16\\ BC^{ 2 }=\quad 25\\ BC=\quad \sqrt { 25 } \\ BC=\quad 5

Also, we see from the figure that B C = 4 r BC= 4r , therefore r = B C 4 r = 5 4 r = 1.25 r=\quad \frac { BC }{ 4 } \\ r=\quad \frac { 5 }{ 4 } \\ r=1.25

And we know:

V s p h e r e = 4 3 π r 3 { V }_{ sphere }=\quad \frac { 4 }{ 3 } \pi { r }^{ 3 }

So:

V s p h e r e 8.18 { V }_{ sphere }\approx \quad 8.18

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...