Find x x .

Geometry Level 3

It is given that A B C \triangle ABC is an equilateral triangle, A E = B F AE = BF and C A F = 4 0 \angle CAF = 40^\circ . What is the measure of B E F \angle BEF ?


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Beautiful!! Let A F A B C = D AF \cap \odot ABC = D and I I be the incenter of Δ B C D . \Delta BCD. Clearly, we have Δ A E F Δ B I C B I = B F B I F = 8 0 x = 3 0 \Delta AEF \cong \Delta BIC \Rightarrow BI = BF \Longrightarrow \angle BIF = 80^{\circ} \therefore x= 30^{\circ}

Let the side length of A B C \triangle ABC be 1 and A E = B F = a AE=BF=a . By sine rule, we have:

B F sin B A F = A B sin A F B a sin 2 0 = 1 sin 10 0 Note that sin ( 18 0 θ ) = sin θ a = sin 2 0 sin 8 0 And sin ( 9 0 θ ) = cos θ = 2 sin 1 0 cos 1 0 cos 1 0 Also sin ( 2 θ ) = 2 sin θ cos θ a = 2 sin 1 0 \begin{aligned} \frac {BF}{\sin \angle BAF} & = \frac {AB}{\sin \angle AFB} \\ \frac a{\sin 20^\circ} & = \frac 1{\color{#3D99F6}\sin 100^\circ} & \small \color{#3D99F6} \text{Note that }\sin (180^\circ - \theta) = \sin \theta \\ \implies a & = \frac {\color{#D61F06}\sin 20^\circ}{\color{#3D99F6}\sin 80^\circ} & \small \color{#3D99F6} \text{And }\sin (90^\circ - \theta) = \cos \theta \\ & = \frac {\color{#D61F06}2\sin 10^\circ\cos 10^\circ}{\color{#3D99F6}\cos 10^\circ} & \small \color{#D61F06} \text{Also }\sin (2 \theta) = 2\sin \theta \cos \theta \\ \implies a & = 2\sin 10^\circ \end{aligned}

By sine rule again,

sin A E B A B = sin A B E A E sin ( 18 0 x ) 1 = sin ( x 2 0 ) a Note that sin ( 18 0 θ ) = sin θ sin x 1 = sin ( x 2 0 ) 2 sin 1 0 a = 2 sin 1 0 sin x sin ( x 2 0 ) = 1 2 sin 1 0 = sin 3 0 sin ( 3 0 2 0 ) x = 30 \begin{aligned} \frac {\sin \angle AEB}{AB} & = \frac {\sin \angle ABE}{AE} \\ \frac {\color{#3D99F6}\sin (180^\circ - x)}1 & = \frac {\sin (x-20^\circ)}{\color{#D61F06}a} & \small \color{#3D99F6} \text{Note that }\sin (180^\circ - \theta) = \sin \theta \\ \frac {\color{#3D99F6}\sin x}1 & = \frac {\sin (x-20^\circ)}{\color{#D61F06}2\sin 10^\circ} & \small \color{#D61F06} a = 2\sin 10^\circ \\ \frac {\sin x}{\sin (x-20^\circ)} & = \frac {\frac 12}{\sin 10^\circ} \\ & = \frac {\sin 30^\circ}{\sin (30^\circ - 20^\circ)} \\ \implies x & = \boxed{30}^\circ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...