find the x in figure

Geometry Level pending


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

cos 126 ° = y 2 + ( 3 x 4 ) 2 + ( 4 x y ) 2 ( 5 x 2 ) 2 2 z ( 4 x y ) \cos 126\degree=\dfrac{y^2+(3x-4)^2+(4x-y)^2-(5x-2)^2}{2z(4x-y)} ,

where z = y 2 + ( 3 x 4 ) 2 z=\sqrt {y^2+(3x-4)^2} .

cos 126 ° = sin 36 ° = y z 2 y ( 4 x y ) = y 2 + ( 3 x 4 ) 2 + ( 4 x y ) 2 ( 5 x 2 ) 2 ( y + 4 x y ) 2 + ( 3 x 4 ) 2 ( 5 x 2 ) 2 = 0 4 x + 12 = 0 x = 3 \cos 126\degree= -\sin 36\degree=-\dfrac{y}{z}\implies -2y(4x-y)=y^2+(3x-4)^2+(4x-y)^2-(5x-2)^2\implies (y+4x-y)^2+(3x-4)^2-(5x-2)^2=0\implies -4x+12=0\implies x=\boxed 3 .

By cosine rule on the triangle with the 12 6 126^\circ angle, we have:

( 5 x 2 ) 2 = ( 3 x 4 ) 2 + y 2 + ( 4 x y ) 2 2 ( 4 x y ) × 3 x 4 cos 3 6 cos 12 6 As cos θ = sin ( 9 0 θ ) 25 x 2 20 x + 4 = 9 x 2 24 x + 16 + y 2 + 16 x 2 8 x y + y 2 2 ( 4 x y ) × 3 x 4 cos 3 6 sin ( 3 6 ) = 9 x 2 24 x + 16 + y 2 + 16 x 2 8 x y + y 2 + 2 ( 4 x y ) ( 3 x 4 ) tan 3 6 Note: tan 3 6 = y 3 x 4 = 9 x 2 24 x + 16 + y 2 + 16 x 2 8 x y + y 2 + 2 ( 4 x y ) ( 3 x 4 ) × y 3 x 4 25 x 2 20 x + 4 = 9 x 2 24 x + 16 + y 2 + 16 x 2 8 x y + y 2 + 8 x y 2 y 2 4 x = 12 x = 3 \small \begin{aligned} (5x-2)^2 & = (3x-4)^2+y^2 + (4x-y)^2 - 2(4x-y)\times \frac {3x-4}{\cos 36^\circ} \blue{\cos 126^\circ} & \small \blue{\text{As }\cos \theta = \sin (90^\circ - \theta)} \\ 25x^2 - 20x + 4 & = 9x^2 - 24x + 16 + y^2 + 16x^2 - 8xy + y^2 - 2(4x-y)\times \frac {3x-4}{\cos 36^\circ} \blue{\sin (-36^\circ) } \\ & = 9x^2 - 24x + 16 + y^2 + 16x^2 - 8xy + y^2 + 2(4x-y)(3x-4)\blue{\tan 36^\circ} & \small \blue{ \text{Note: }\tan 36^\circ = \frac y{3x-4}} \\ & = 9x^2 - 24x + 16 + y^2 + 16x^2 - 8xy + y^2 + 2(4x-y)\cancel{(3x-4)}\times \blue{\frac y{\cancel{3x-4}}} \\ \cancel{25x^2} - 20x + 4 & = \cancel{9x^2} - 24x + 16 + \cancel{y^2} + \cancel{16x^2} - \cancel{8xy} + \cancel{y^2} + \cancel{8xy} - \cancel{2y^2} \\ 4x & = 12 \\ \implies x & = \boxed 3 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...