Find the x

Geometry Level 3

Calculate the value of x x .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Since A B C \triangle ABC is isosceles, A B C = 14 0 \angle ABC=140^\circ . It follows that A D C = 15 0 \angle ADC=150^\circ .

Let A B = B C = 1 AB=BC=1 . By cosine law, we have,

( A C ) 2 = 1 2 + 1 2 2 ( 1 ) ( 1 ) cos 140 = 2 2 cos 140 (AC)^2=1^2+1^2-2(1)(1) \cos~140=2-2 \cos~140 \implies A C = 2 2 cos 140 AC=\sqrt{2-2 \cos~140}

By sine law, we have

D C sin 20 = 2 2 cos 140 sin 150 \dfrac{DC}{\sin~20}=\dfrac{\sqrt{2-2 \cos~140}}{\sin~150} \implies D C = sin 20 sin 150 2 2 cos 140 DC=\dfrac{\sin~20}{\sin~150}\sqrt{2-2 \cos~140}

By cosine law, we have

( D B ) 2 = ( sin 20 sin 150 2 2 cos 140 ) 2 + 1 2 2 ( sin 20 sin 150 2 2 cos 140 ) cos 30 (DB)^2=\left(\dfrac{\sin~20}{\sin~150}\sqrt{2-2 \cos~140}\right)^2+1^2-2\left(\dfrac{\sin~20}{\sin~150}\sqrt{2-2 \cos~140}\right) \cos~30

D B = ( sin 20 sin 150 2 2 cos 140 ) 2 + 1 2 ( sin 20 sin 150 2 2 cos 140 ) cos 30 DB=\sqrt{\left(\dfrac{\sin~20}{\sin~150}\sqrt{2-2 \cos~140}\right)^2+1-2\left(\dfrac{\sin~20}{\sin~150}\sqrt{2-2 \cos~140}\right) \cos~30}

By sine law,

D B sin 30 = 1 sin x \dfrac{DB}{\sin~30}=\dfrac{1}{\sin~x} \implies sin x = sin 30 D B \sin~x=\dfrac{\sin~30}{DB} \implies sin x = sin 30 ( sin 20 sin 150 2 2 cos 140 ) 2 + 1 2 ( sin 20 sin 150 2 2 cos 140 ) cos 30 \sin~x=\dfrac{\sin~30}{\sqrt{\left(\dfrac{\sin~20}{\sin~150}\sqrt{2-2 \cos~140}\right)^2+1-2\left(\dfrac{\sin~20}{\sin~150}\sqrt{2-2 \cos~140}\right) \cos~30}}

x = sin 1 ( sin 30 ( sin 20 sin 150 2 2 cos 140 ) 2 + 1 2 ( sin 20 sin 150 2 2 cos 140 ) cos 30 ) = x=\sin^{-1}\left(\dfrac{\sin~30}{\sqrt{\left(\dfrac{\sin~20}{\sin~150}\sqrt{2-2 \cos~140}\right)^2+1-2\left(\dfrac{\sin~20}{\sin~150}\sqrt{2-2 \cos~140}\right) \cos~30}}\right)= 5 0 \boxed{50^\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...