6 solutions in all

Algebra Level 3

Consider the system of equations

{ 3 x y = 7 2 x 3 y 3 = 20 27 \begin{cases} -3 xy = - \frac{7}{2} \\ -x^3 - y^3 = \frac{20}{27} \\ \end{cases}

There are 6 solutions ( x i , y i ) (x_i, y_i ) in total. If we let z 1 = x 1 + y 1 = x 2 + y 2 ; z 2 = x 3 + y 3 ; z 3 = x 4 + y 4 ; z 4 = x 5 + y 5 = x 6 + y 6 z_1=x_1+y_1=x_2+y_2 ; z_2=x_3+y_3 ; z_3=x_4+y_4 ; z_4=x_5+y_5=x_6+y_6 , then find ( 2 z 1 ) + z 2 + z 3 + ( 2 z 4 ) (2*z_1)+z_2+z_3+(2*z_4)


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pulkit Gupta
Nov 25, 2015

Lets focus on the last equation.

( x + y ) 3 (x+y)^{3} = - 20/27

Now , ( x + y ) 3 (x+y)^{3} = ( x + y ) { ( x + y ) 2 (x+y)^{2} - 3 x y )

Putting x + y = z , we get a cubic equation in z with coefficient of ( z ) 2 (z)^{2} = 0 Hence the sum of all possible values of z is 0

Yes,you found it :)

Raffaele Piccirillo - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...