Find E \angle E

Geometry Level 2

Triangle A B C ABC has A = 9 0 \angle A = 90^\circ , A B = 4 AB=4 , and A C = 3 AC=3 . Line E C EC bisects C \angle C and cut A B AB at D D such that E D = D C ED=DC . Find the measure B E C \angle BEC in degrees.


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 24, 2020

Since A C = 3 AC=3 , A B = 4 AB=4 , and A = 9 0 \angle A = 90^\circ , B C = 5 BC=5 . Let A C B = α \angle ACB = \alpha ; then tan α = 4 3 \tan \alpha = \dfrac 43 , then

2 tan α 2 1 tan 2 α 2 = 4 3 2 tan 2 α 2 + 3 tan α 2 2 = 0 ( 2 tan α 2 1 ) ( tan α 2 + 2 ) = 0 SInce tan α > 0 tan α 2 = 1 2 \begin{aligned} \frac {2\tan \frac \alpha 2}{1-\tan^2 \frac \alpha 2} & = \frac 43 \\ 2\tan^2 \frac \alpha 2 + 3 \tan \frac \alpha 2 - 2 & = 0 \\ \left(2\tan \frac \alpha 2 - 1\right) \left(\tan \frac \alpha 2 + 2 \right) & = 0 & \small \blue{\text{SInce }\tan \alpha > 0} \\ \implies \tan \frac \alpha 2 & = \frac 12 \end{aligned}

Drop a perpendicular from E E to the extension of B C BC at F F . We note that C E F \triangle CEF and C D A \triangle CDA are similar. Then C F A C = C E C D = 2 \dfrac {CF}{AC} = \dfrac {CE}{CD} = 2 , C F = 2 × A C = 6 \implies CF = 2 \times AC = 6 . SInce tan α 2 = E F C F = 1 2 \tan \dfrac \alpha 2 = \dfrac {EF}{CF} = \dfrac 12 , E F = 3 \implies EF = 3 . Then we have:

B E C = F E C F E B = tan 1 C F E F tan 1 B F E F = tan 1 6 3 tan 1 1 3 tan E = 2 1 3 1 + 2 3 = 1 E = 45 \begin{aligned} \angle BEC & = \angle FEC - \angle FEB = \tan^{-1} \frac {CF}{EF} - \tan^{-1} \frac {BF}{EF} = \tan^{-1} \frac 63 - \tan^{-1} \frac 13 \\ \implies \tan \angle E & = \frac {2-\frac 13}{1+\frac 23} = 1 \\ \implies \angle E & = \boxed{45}^\circ \end{aligned}

We have A C = 3 , A B = 4 , B C = 3 2 + 4 2 = 5 , sin C 2 = 1 5 |\overline {AC}|=3,|\overline {AB}|=4,|\overline {BC}|=\sqrt {3^2+4^2}=5,\sin \dfrac {C}{2}=\dfrac {1}{\sqrt 5}

So, A D = 3 2 , B D = 5 2 , D C = 3 5 2 |\overline {AD}|=\dfrac {3}{2},|\overline {BD}|=\dfrac {5}{2},|\overline {DC}|=\dfrac {3\sqrt 5}{2}

Let B E C = α \angle {BEC}=α . Then

5 2 sin α = 3 5 2 cos ( C 2 α ) \dfrac {5}{2\sin α}=\dfrac {\frac{3\sqrt 5}{2}}{\cos (\frac{C}{2}-α)}

tan α = 1 α = 45 ° \implies \tan α=1\implies α=\boxed {45\degree} .

Ron Gallagher
Jun 24, 2020

By the Pythagorean Theorem, BC = 5. If angle(ACD) = r, we see tan(2*r) = 4/3. This means:

2 tan(r) / (1-tan(r) tan(r)) = 4/3, or

tan(r) = 1/2.

Now, using right triangle trigonometry, CD = 3*sqrt(5)/2 = ED and AD = 3/2. From this, we see BD = 4 - 3/2 = 5/2.

Now apply the Law of Cosines to triangle EBC to see:

(EB)^2 = 4 45/4 + 25 - 2 2 (3 sqrt(5)/2) 5 cos(r) = 10 (the last equality follows from cos(arctan(1/2)) = 2/sqrt(5).

Hence, EB = sqrt(10).

Now, note that angle(EDB) = 90 - r and apply the Law of Sines to triangle EDB to see:

sin(theta) = 1/sqrt(2)

Which means theta = 45.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...