Find this limit

Calculus Level 2

lim x x 2 e 4 x 1 4 x = ? \large \lim_{x \to \infty} \frac{x^2}{e^{4x}-1-4x} = ?

+ +\infty -\infty 1 1 e e 0 None of these 1 e \frac {1}{e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Munem Shahriar
Jan 27, 2018

Relevant wiki: L'Hôpital's Rule .

lim x x 2 e 4 x 1 4 x \displaystyle \lim_{x \to \infty} \dfrac{x^2}{e^{4x}-1-4x}

= lim x 2 x 4 e 4 x 4 \displaystyle = \lim_{x \to \infty} \dfrac{2x}{4e^{4x} -4}

= lim x x 2 ( e 4 x 1 ) \displaystyle = \lim_{x \to \infty} \dfrac{x}{2(e^{4x} -1)}

= lim x 1 8 e 4 x \displaystyle = \lim_{x \to \infty} \dfrac{1}{8e^{4x}}

= 1 8 × lim x 1 e 4 x \displaystyle = \dfrac 18 \times \lim_{x \to \infty} \dfrac{1}{e^{4x}}

= 1 8 × 1 = \dfrac 18 \times \dfrac 1{\infty}

= 0 = \boxed{0}

Chew-Seong Cheong
Jan 28, 2018

Relevant wiki: Maclaurin Series

L = lim x x 2 e 4 x 1 4 x By Maclaurin series = lim x x 2 ( 1 + 4 x + 4 2 x 2 2 ! + 4 3 x 3 3 ! + ) 1 4 x = lim x x 2 4 2 x 2 2 ! + 4 3 x 3 3 ! + 4 4 x 4 4 ! Divide up and down by x 2 = lim x 1 4 2 2 ! + 4 3 x 3 ! + 4 4 x 2 4 ! = 0 \begin{aligned} L & = \lim_{x \to \infty} \frac {x^2}{{\color{#3D99F6}e^{4x}}-1-4x} & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x \to \infty} \frac {x^2}{{\color{#3D99F6}\left(1+4x+\frac {4^2x^2}{2!} + \frac {4^3x^3}{3!}+ \cdots \right)}-1-4x} \\ & = \lim_{x \to \infty} \frac {x^2}{\frac {4^2x^2}{2!} + \frac {4^3x^3}{3!} + \frac {4^4x^4}{4!} \cdots} & \small \color{#3D99F6} \text{Divide up and down by }x^2 \\ & = \lim_{x \to \infty} \frac 1{\frac {4^2}{2!} + \frac {4^3x}{3!} + \frac {4^4x^2}{4!} \cdots} \\ & = \boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...