Find this sum, if you can

Calculus Level 5

S = 1 1 3 3 + 1 5 3 2 1 7 3 3 + \large S=1 - \dfrac1{3\cdot3} + \dfrac1{5\cdot3^2} - \dfrac1{7\cdot3^3} + \cdots

Find the value of 12 × S \sqrt{12} \times S up to 2 decimal places.


The answer is 3.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

First Last
Apr 13, 2016

Rewriting as 1 + n = 1 1 ( 4 n 1 ) 3 2 n 1 + 1 ( 4 n + 1 ) 3 2 n = \displaystyle 1 + \sum_{n=1}^{\infty}- \frac{1}{(4n-1)3^{2n-1}}+\frac{1}{(4n+1)3^{2n}} =

1 + n = 1 0 1 y 4 n 2 9 n d y + y 4 n 9 n d y = \displaystyle 1+\sum_{n=1}^{\infty}\int_{0}^{1}\frac{y^{4n-2}}{9^n}dy+\frac{y^{4n}}{9^n}dy =

Then since the integral and sum are with respect different variables, they can be switched and the sums evaluated with 0 < y < 1 0<y<1

1 + 0 1 ( n = 1 y 4 n 2 9 n + y 4 n 9 n ) d y = \displaystyle 1+\int_{0}^{1}( \sum_{n=1}^{\infty}\frac{-y^{4n-2}}{9^n}+\frac{y^{4n}}{9^n})dy =

1 + 0 1 y 4 3 y 2 9 y 4 d y = π 2 3 \displaystyle 1+\int_{0}^{1}\frac{y^4-3y^2}{9-y^4}dy = \frac{\pi}{2\sqrt{3}}

12 π 2 3 = π \displaystyle\frac{\sqrt{12}\pi}{2\sqrt{3}} = \bf\boxed{\pi}

@Jasper Braun Great solution!!!! (+1)

shivam mishra - 5 years, 2 months ago
Chew-Seong Cheong
Oct 30, 2016

Consider the Macluarin series for tan 1 x \tan^{-1} x .

tan 1 x = x x 3 3 + x 5 5 x 7 7 + . . . Putting x = 1 3 tan 1 1 3 = 1 3 1 3 ( 3 ) 3 + 1 5 ( 3 ) 5 1 7 ( 3 ) 7 + . . . Multiplying both sides with 3 3 tan 1 1 3 = 1 1 3 3 + 1 5 3 2 1 7 3 3 + . . . = S \begin{aligned} \tan^{-1} x & = x - \frac {x^3}3 + \frac {x^5}5 - \frac {x^7}7 + ... & \small {\color{#3D99F6}\text{Putting }x=\frac 1{\sqrt 3}} \\ \tan^{-1} \frac 1{\sqrt 3} & = \frac 1{\sqrt 3} - \frac 1{3(\sqrt 3)^3} + \frac 1{5(\sqrt 3)^5} - \frac 1{7(\sqrt 3)^7} + ... & \small {\color{#3D99F6}\text{Multiplying both sides with } \sqrt 3} \\ \sqrt 3 \tan^{-1} \frac 1{\sqrt 3} & = 1 - \frac 1{3\cdot 3} + \frac 1{5\cdot 3^2} - \frac 1{7\cdot 3^3} + ... \\ & = S \end{aligned}

12 S = 12 3 tan 1 1 3 = 6 π 6 = π 3.14 \implies \sqrt{12} S = \sqrt{12} \cdot \sqrt 3 \tan^{-1} \dfrac 1{\sqrt 3} = 6 \cdot \dfrac \pi 6 = \pi \approx \boxed{3.14}

I did it using complex analysis of taylor seires for ln(1-x) . Please download and zoom in the picture to see clearly and the picture quality is HDR so it is quite clear.

{: .cente

敬全 钟
Oct 17, 2016

We can get this sum through some manipulation of the Maclaurin series for arctan x \arctan x (Derivation below), which is arctan x = x x 3 3 + x 5 5 . \arctan x = x-\frac{x^3}{3}+\frac{x^5}{5}-\cdots. Dividing both sides by x x , we get arctan x x = 1 x 2 3 + x 4 5 . \frac{\arctan x}{x}=1-\frac{x^2}{3}+\frac{x^4}{5}-\cdots. Finally, by substituting x = 1 3 x=\frac{1}{\sqrt{3}} , we get S = 1 1 3 × 3 + 1 5 × 3 2 1 7 × 3 3 + = arctan ( 1 3 ) 1 3 = 3 π 6 \begin{aligned} S&=&1-\frac{1}{3\times3}+\frac{1}{5\times3^2}-\frac{1}{7\times3^3}+\cdots\\&=&\frac{\arctan\left(\frac{1}{\sqrt{3}}\right)}{\frac{1}{\sqrt{3}}}\\ &=&\frac{\sqrt{3}\pi}{6} \end{aligned} Hence, 12 × S = π . \sqrt{12}\times S=\pi. QED.


Do note that this solution works because the substitution we used here is in the range ( 1 , 1 ) (-1,1) (this is also known as the radius of convergence of the series). Now the derivation of the Maclaurin series for arctan x \arctan x . Consider arctan x = 0 x 1 1 + t 2 d t = 0 x ( 1 x 2 + x 4 x 6 + ) d t ( By Binomial expansion, and t < 1 ) = x x 3 3 + x 5 5 x 7 7 + , x < 1. \begin{aligned} \arctan x&=&\int_0^x\frac{1}{1+t^2} dt\\ &=&\int_0^x \left(1-x^2+x^4-x^6+\cdots\right) dt\ \ \ \ (\textrm{By Binomial expansion, and } |t|<1)\\ &=&x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots, |x|<1. \end{aligned} The derivation is complete.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...