Find using Progression!!

Algebra Level pending

The values is..

4 1 16 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Bhargav Upadhyay
Feb 13, 2015

G i v e n i s S a y M = 2 1 4 4 1 8 8 1 16 16 1 32 . . . . M = 2 ( 1 4 + 2 8 + 3 16 + 4 32 . . . ) L e t S = 1 4 + 2 8 + 3 16 + 4 32 . . . ( 1 ) 0.5 S = 1 8 + 2 16 + 3 32 + 4 64 . . . ( 2 ) B y ( 1 ) ( 2 ) 0.5 S = 1 4 + 1 8 + 1 16 + 1 32 . . . W h i c h i s g e o m e t r i c s e r i e s S = 1 2 ( 1 4 ( 1 1 2 ) ) = 1. M = 2 1 = 2. T h i s c a n b e a l s o s o l v e u s i n g A r i t h m a t i c o g e o m e t r i c s e r i e s . Given\quad is\\ Say\quad M\quad =\quad { 2 }^{ \frac { 1 }{ 4 } }\quad *\quad { 4 }^{ \frac { 1 }{ 8 } }\quad *\quad { 8 }^{ \frac { 1 }{ 16 } }\quad *\quad { 16 }^{ \frac { 1 }{ 32 } }\quad ....\\ M\quad =\quad { 2 }^{ (\frac { 1 }{ 4 } +\frac { 2 }{ 8 } +\frac { 3 }{ 16 } +\frac { 4 }{ 32 } ...) }\\ Let\quad S\quad =\quad \frac { 1 }{ 4 } +\frac { 2 }{ 8 } +\frac { 3 }{ 16 } +\frac { 4 }{ 32 } ...\quad \quad \quad \quad (1)\\ 0.5\quad S\quad =\quad \quad \quad \quad \frac { 1 }{ 8 } +\frac { 2 }{ 16 } +\frac { 3 }{ 32 } +\frac { 4 }{ 64 } ...\quad (2)\\ By\quad (1)\quad -\quad (2)\\ 0.5\quad S\quad =\quad \frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\frac { 1 }{ 16 } +\frac { 1 }{ 32 } ...\\ Which\quad is\quad geometric\quad series\\ \therefore \quad S\quad =\quad \frac { 1 }{ 2 } (\frac { \frac { 1 }{ 4 } }{ (1\quad -\quad \frac { 1 }{ 2 } ) } )\quad =\quad 1.\\ M\quad =\quad { 2 }^{ 1 }\quad =\quad 2.\\ This\quad can\quad be\quad also\quad solve\quad using\quad Arithmatico-geometric\quad series.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...