Find Volume 2

Calculus Level 4

Let b b and c c be real constants. Minimize the volume of the region bounded between y = x 40 + b x 20 + c y = x^{40} + bx^{20} + c , x = 0 x= 0 and x = 1 x=1 , when it is revolved about the x x -axis.

If this volume can be expressed as m n π \dfrac mn \pi , where m m and n n are coprime positive integers, submit your answer as m + n m+n .

Bonus: In general, let n n be a positive integer.

Minimize the volume V n V_{n} of the region bounded between y = x 4 n + b x 2 n + c y = x^{4n} + bx^{2n} + c , x = 0 x= 0 and x = 1 x=1 , when it is revolved about the x x -axis.


The answer is 507295081.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 24, 2018

I did the general case: x 4 n + b x 2 n + c x^{4n} + bx^{2n} + c .

The volume V n ( a , b ) = π 0 1 ( x 4 n + b x 2 n + c ) 2 d x = π 0 1 ( x 8 n + 2 b x 6 n + ( b 2 + 2 c ) x 4 n + 2 b c x 2 n + c 2 ) d x V_{n}(a,b) = \pi\int_{0}^{1} (x^{4n} + bx^{2n} + c)^2 dx = \pi\int_{0}^{1} (x^{8n} + 2bx^{6n} + (b^2 + 2c)x^{4n} + 2bc x^{2n} + c^2)dx

= π ( x 8 n + 1 8 n + 1 + 2 b 6 n + 1 x 6 n + 1 + b 2 + 2 c 4 n + 1 x 4 n + 1 + 2 b c 2 n + 1 x 2 n + 1 + c 2 x ) 0 1 = = \pi(\dfrac{x^{8n + 1}}{8n + 1} + \dfrac{2b}{6n + 1}x^{6n + 1} + \dfrac{b^2 + 2c}{4n + 1}x^{4n + 1} + \dfrac{2bc}{2n + 1}x^{2n + 1} + c^2x)_{0}^{1} = π ( 1 8 n + 1 + 2 b 6 n + 1 + b 2 + 2 c 4 n + 1 + 2 b c 2 n + 1 + c 2 ) \pi(\dfrac{1}{8n + 1} + \dfrac{2b}{6n + 1} + \dfrac{b^2 + 2c}{4n + 1} + \dfrac{2bc}{2n + 1} + c^2)

V b = 2 π ( 1 6 n + 1 + b 4 n + 1 + c 2 n + 1 ) = 0 \implies \dfrac{\partial{V}}{\partial{b}} = 2\pi(\dfrac{1}{6n + 1} + \dfrac{b}{4n + 1} + \dfrac{c}{2n + 1}) = 0 and V c = 2 π ( 1 4 n + 1 + b 2 n + 1 + c ) = 0 \dfrac{\partial{V}}{\partial{c}} = 2\pi(\dfrac{1}{4n + 1} + \dfrac{b}{2n + 1} + c) = 0

1 4 n + 1 b + 1 2 n + 1 c = 1 6 n + 1 \implies \dfrac{1}{4n + 1}b + \dfrac{1}{2n + 1}c = \dfrac{-1}{6n + 1} and 1 2 n + 1 b + c = 1 4 n + 1 \dfrac{1}{2n + 1}b + c = \dfrac{-1}{4n + 1}

Solving the system we obtain b = 2 ( 2 n + 1 ) 6 n + 1 b = \dfrac{-2(2n + 1)}{6n + 1} and c = 2 n + 1 ( 4 n + 1 ) ( 6 n + 1 ) c = \dfrac{2n + 1}{(4n + 1)(6n + 1)} .

2 V b 2 = 2 π 4 n + 1 > 0 \dfrac{\partial^2{V}}{\partial{b^2}} = \dfrac{2\pi}{4n + 1} > 0 and 2 V c 2 = 2 π > 0 \dfrac{\partial^2{V}}{\partial{c^2}} = 2\pi > 0 and b ( V c ) = c ( V b ) = 2 π 2 n + 1 \dfrac{\partial}{\partial{b}}(\dfrac{\partial{V}}{\partial{c}}) = \dfrac{\partial}{\partial{c}}(\dfrac{\partial{V}}{\partial{b}}) = \dfrac{2\pi}{2n + 1}

The hessian matrix M = 2 π 4 n + 1 2 π 2 n + 1 2 π 2 n + 1 2 π M= \begin{vmatrix}{\dfrac{2\pi}{4n + 1}} && {\dfrac{2\pi}{2n + 1}} \\ {\dfrac{2\pi}{2n + 1}} && {2\pi}\end{vmatrix} and det ( M ) = 16 n 2 π 2 ( 4 n + 1 ) ( 2 n + 1 ) 2 > 0 \det(M) = \dfrac{16n^2\pi^2}{(4n + 1)(2n + 1)^2} > 0 \implies we have a minimum at ( 2 ( 2 n + 1 ) 6 n + 1 , 2 n + 1 ( 4 n + 1 ) ( 6 n + 1 ) (\dfrac{-2(2n + 1)}{6n + 1},\dfrac{2n + 1}{(4n + 1)(6n + 1})

After simplifying we obtain: V n = 64 n 4 π ( 8 n + 1 ) ( 6 n + 1 ) 2 ( 4 n + 1 ) 2 V_{n} = \dfrac{64n^4\pi}{(8n + 1)(6n + 1)^2(4n + 1)^2} .

Using n = 10 V m i n = 640000 π 81 6 1 2 4 1 2 = 640000 π 506655081 = m n π m + n = 507295081 n = 10 \implies V_{min} = \dfrac{640000\pi}{81 * 61^2 * 41^2} = \dfrac{640000\pi}{506655081} = \dfrac{m}{n}\pi \implies m + n = \boxed{507295081} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...