find x in the equation

Algebra Level 2

log 3 x + log 2 ( 2 x + 2 ) = 4 \large \log_3 x + \log_2 (2x+2) = 4

Find x x that satisfies the equation above.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

log 3 x + log 2 ( 2 x + 2 ) = 4 \log_3 x+\log_2 (2x+2)=4

l o g 3 x + log 2 ( x + 1 ) + log 2 2 = 4 \implies log_3 x+\log_2 (x+1)+\log_2 2=4

log 3 x + log 2 ( x + 1 ) = 3 = log 2 8 \implies \log_3 x+\log_2 (x+1)=3=\log_2 8

log 3 x = log 2 8 log 2 ( x + 1 ) = log 2 ( 8 x + 1 ) = k \implies \log_3 x=\log_2 8-\log_2 (x+1)=\log_2 (\frac{8}{x+1})=k (say).

Then x = 3 k , 8 x + 1 = 2 k x=3^k, \dfrac{8}{x+1}=2^k

2 k + 6 k = 8 = 2 1 + 6 1 \implies 2^k+6^k=8=2^1+6^1 .

Hence k = 1 k=1 and x = 3 1 = 3 x=3^1=\boxed 3 .

Chew-Seong Cheong
May 16, 2020

log 3 x + log 2 ( 2 x + 2 ) = 4 log x log 3 + log ( 2 ( x + 1 ) log 2 = 4 log x log 3 + log 2 + log ( x + 1 ) log 2 = 4 log x log 3 + log ( x + 1 ) log 2 = 3 By observation x = 3 log 3 log 3 + log ( 3 + 1 ) log 2 = 3 1 + 2 = 3 \begin{aligned} \log_3 x + \log_2 (2x+2) & = 4 \\ \frac {\log x}{\log 3} + \frac {\log (2(x+1)}{\log 2} & = 4 \\ \frac {\log x}{\log 3} + \frac {\log 2 + \log (x+1)}{\log 2} & = 4 \\ \frac {\log \red x}{\log 3} + \frac {\log (\red x+1)}{\log 2} & = 3 & \small \red{\text{By observation }x=3} \\ \frac {\log \red 3}{\log 3} + \frac {\log (\red 3+1)}{\log 2} & = 3 \\ 1 + 2 & = 3 \end{aligned}

Therefore x = 3 x = \boxed 3 .

Nice one! +1

Mahdi Raza - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...