Find x + y x+y

Algebra Level 3

1 6 x + y 2 + 1 6 y + x 2 = 1 16^{x+y^2} +16^{y+x^2}=1

If real numbers x x and y y satisfy the equation above, find x + y x+y .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 25, 2020

Note that 1 2 = 1 6 x + y 2 + 1 6 y + x 2 2 1 6 x + y 2 + y + x 2 = 4 ( x + 1 2 ) 2 + ( y + 1 2 ) 2 1 2 = 1 2 × 4 ( x + 1 2 ) 2 + ( y + 1 2 ) 2 \frac12 = \frac{16^{x+y^2} + 16^{y+x^2}}{2} \;\ge \; \sqrt{16^{x+y^2 + y+x^2}} \; = \; 4^{(x+\frac12)^2 + (y+\frac12)^2 - \frac12} \; = \; \frac12 \times 4^{(x+\frac12)^2 + (y+\frac12)^2} using the AM/GM inequality, so that 4 ( x + 1 2 ) 2 + ( y + 1 2 ) 2 1 4^{(x+\frac12)^2 + (y+\frac12)^2} \le 1 which implies that x = y = 1 2 x=y=-\tfrac12 , so that x + y = 1 x+y=\boxed{-1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...