Find x+y+z

Algebra Level 1

x+y=4

y+z=8

z+x=16

Then

x+y+z=?


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mohammad Khaza
Jul 25, 2017

x + y x+y = 4 4 ........................[1]

x + z x+z = 16 16 ......................[2]

z + y z+y = 8 8 ........................[3]

subtracting [1] from [2] we get,

x + z x y x+z-x-y = 16 4 16-4

or, z y z-y = 12 12 ............................................[4]

now, adding [3] and [4] we get,

z + y + z y z+y+z-y = 8 + 12 8+12

or, 2 z 2z = 20 20

or, z = 10 z=10

so, x = 16 10 x=16-10 ..............[using equation 2]

or, x = 6 x=6

and, y = 4 6 y=4-6 or, y = 2 y=-2 ........[using equation 1]

so, x + y + z = 10 + 6 2 = 14 x+y+z=10+6-2=14

Aareyan Manzoor
Oct 15, 2015

we see that { x + y = 4 ( 1 ) y + z = 8 ( 2 ) z + x = 16 ( 3 ) \begin{cases} x+y=4--(1)\\y+z=8--(2)\\z+x=16--(3)\end{cases} sum them up x + y + y + z + z + x = 4 + 8 + 16 x+y+y+z+z+x=4+8+16 2 x + 2 y + 2 z = 28 2 ( x + y + z ) = 28 2x+2y+2z=28\longrightarrow 2(x+y+z)=28 x + y + z = 28 2 = 14 x+y+z=\dfrac{28}{2}=\boxed{14}

Mahdi Raza
Jun 12, 2020

\[\begin{array} & (&x &+ &y & & &)= &4 \\ &+ (& & &y &+ &z &)= &8 \\ &+ (&x & & & + &z &)= &16 \\ \hline \\ &= (&2x &+ &2y & + &2z &)= &28 \\ \\ \hline &= (&x &+ &y & + &z &)= &\boxed{14}

\end{array}\]

Edwin Gray
Apr 3, 2019

2x + 2y + 2z = 28, x + y + z = 14

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...