Find y y ?

Calculus Level 3

lim x 0 [ sin x x + x sin x + tan x x + x tan x + cos x ] = y + 1 y \lim_{x\to0 } \left [\left \lfloor \dfrac {\sin x}x \right \rfloor + \left \lfloor \dfrac x{\sin x} \right \rfloor + \left \lfloor \dfrac {\tan x}x \right \rfloor + \left \lfloor \dfrac x {\tan x} \right \rfloor + \lfloor \cos x \rfloor \right] = y + \dfrac1y

Find the value of y y satisfying the equation above.

Notation : \lfloor \cdot \rfloor denotes the floor function .

3 5 2 \frac { 3-\sqrt { 5 } }{ 2 } \quad 2 + 3 2+\sqrt { 3 } \quad 2 3 2-\sqrt { 3 } \quad 3 + 5 2 \frac { 3+\sqrt { 5 } }{ 2 } \quad 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sanath Balaji
Jun 2, 2016

S i n c e , s i n x x t a n x a n d l t x 0 c o s x < 1 y + 1 y = 2 y 2 2 y + 1 = 0 y = 1 Since,\\ sin\quad x\quad \le \quad x\quad \le \quad tan\quad x\quad and\quad \quad \underset { x\rightarrow 0 }{ lt\quad } cos\quad x\quad <\quad 1\\ y+\frac { 1 }{ y } =2\\ { y }^{ 2 }-2y+1=0\\ y=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...