Find y y such that x x and z z have to follow progressions.

Algebra Level 3

Three real numbers x x , y y and z z are in a geometric progression and x + 3 x+3 , y + 3 y+3 and z + 3 z+3 are in a harmonic progression . Then find the value of y y for which both the conditions above hold true for all x , z 3 x,z \ne -3 .


The answer is 3.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Apr 23, 2017

Relevant wikis:


From the condition for geometric progression, we have

x z = y 2 xz = y^2

And from the condition of harmonic progression,

1 x + 3 + 1 z + 3 = 2 y + 3 x + z + 3 x z + 3 x + 3 z + 9 = 2 y + 3 ( x + z + 6 ) ( y + 3 ) = 2 ( y 2 + 3 x + 3 z + 9 ) As x z = y 2 x y + 3 x + y z + 3 z + 6 y + 18 = 2 y 2 + 6 x + 6 z + 18 x y + y z 3 x 3 z = 2 y 2 6 y ( y 3 ) ( x + z ) = 2 y ( y 3 ) ( y 3 ) ( x + z 2 y ) = 0 y = 3 or x + z 2 y = 0 ( Not true x , y , z R as they do not follow an arithmetic progression ) \begin{aligned} & \dfrac{1}{x+3} + \dfrac{1}{z+3} = \dfrac{2}{y+3} \\ \implies & \dfrac{x+z+3}{xz+3x+3z+9} = \dfrac{2}{y+3} \\ \implies & (x+z+6)(y+3) = 2(y^2 + 3x+3z+9) \qquad \qquad \qquad \small{\color{#3D99F6} \text{As } xz = y^2} \\ \implies & xy+3x+yz+3z+6y+18 = 2y^2 + 6x+6z+18 \\ \implies & xy+yz-3x-3z = 2y^2 - 6y \\ \implies & (y-3)(x+z) = 2y(y-3) \\ \implies & (y-3)(x+z-2y) = 0 \\ \implies & \boxed{y=3} \\ & \text{ or } \\ & x+z-2y = 0 \qquad (\small{\color{#3D99F6} \text{Not true } \forall \ x,y,z \in \mathbb{R} \text{ as they do not follow an arithmetic progression}}) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...