Find my x

Algebra Level 2

2 f ( x 1 x ) + f ( 1 x 1 ) = 3 x 1 \large 2f \left(\frac{x}{1-x}\right) + f \left(\frac{1}{x-1}\right) = \frac{3}{x-1}

It is known that the equation above holds true for all real x x except 1. Find f ( 1 ) f(-1) .

0 1 -1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

2f( x 1 x \frac{x}{1-x} ) + f( 1 x 1 \frac{1}{x-1} ) = 3 x 1 \frac{3}{x-1} ... (a)

Replace x x by 1 x \frac{1}{x} , we get:

2f( 1 / x 1 1 / x \frac{1/x}{1-1/x} ) + f( 1 1 / x 1 \frac{1}{1/x-1} ) = 3 1 / x 1 \frac{3}{1/x-1}

\implies 2f( 1 x 1 \frac{1}{x-1} ) + f( x 1 x \frac{x}{1-x} ) = 3 x 1 x \frac{3x}{1-x}

Now multiply both sides by 2;

\implies 4f( 1 x 1 \frac{1}{x-1} ) + 2f( x 1 x \frac{x}{1-x} ) = 6 x 1 x \frac{6x}{1-x} ... (b)

Perform the operation (b) - (a);

4f( 1 x 1 \frac{1}{x-1} ) + 2f( x 1 x \frac{x}{1-x} ) - 2f( x 1 x \frac{x}{1-x} ) - f( 1 x 1 \frac{1}{x-1} ) = 6 x 1 x \frac{6x}{1-x} - 3 x 1 \frac{3}{x-1}

\implies 3f( 1 x 1 \frac{1}{x-1} ) = 6 x 1 x \frac{6x}{1-x} + 3 1 x \frac{3}{1-x}

\implies 3f( 1 x 1 \frac{1}{x-1} ) = 6 x + 3 1 x \frac{6x+3}{1-x}

\implies f( 1 x 1 \frac{1}{x-1} ) = 2 x + 1 1 x \frac{2x+1}{1-x}

Put x x = 0;

f( 1 0 1 \frac{1}{0-1} ) = 2 ( 0 ) + 1 1 0 \frac{2(0)+1}{1-0}

f(-1) = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...