It is known that the equation above holds true for all real except 1. Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
2f( 1 − x x ) + f( x − 1 1 ) = x − 1 3 ... (a)
Replace x by x 1 , we get:
2f( 1 − 1 / x 1 / x ) + f( 1 / x − 1 1 ) = 1 / x − 1 3
⟹ 2f( x − 1 1 ) + f( 1 − x x ) = 1 − x 3 x
Now multiply both sides by 2;
⟹ 4f( x − 1 1 ) + 2f( 1 − x x ) = 1 − x 6 x ... (b)
Perform the operation (b) - (a);
4f( x − 1 1 ) + 2f( 1 − x x ) - 2f( 1 − x x ) - f( x − 1 1 ) = 1 − x 6 x - x − 1 3
⟹ 3f( x − 1 1 ) = 1 − x 6 x + 1 − x 3
⟹ 3f( x − 1 1 ) = 1 − x 6 x + 3
⟹ f( x − 1 1 ) = 1 − x 2 x + 1
Put x = 0;
f( 0 − 1 1 ) = 1 − 0 2 ( 0 ) + 1
f(-1) = 1