Find y ( y + x ) y^{(y+x)} ?

Algebra Level 2

{ 7 x 5 y = 175 7 y 5 x = 245 \begin{cases} 7^x \cdot 5^y = 175 \\ 7^y \cdot 5^x = 245 \end{cases}

Let x x and y y be real numbers satisfying the system of equations above.

Find y x + y y^{x+y} .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Engelsman
Jan 25, 2017

175 = 5 2 7 1 , 245 = 5 1 7 2 x = 1 , y = 2. 175 = 5^{2}7^{1}, 245 = 5^{1}7^{2} \Rightarrow x =1, y = 2. Thus, y x + y = 2 1 + 2 = 2 3 = 8 . y^{x+y} = 2^{1+2} = 2^{3} = \boxed{8}.

We can divide the two equations

7 y 5 x 7 x 5 y = 245 175 \frac{7^{y}•5^{x}}{7^{x}•5^{y}} = \frac{245}{175}

7 y 7 x 5 y 5 x = 1.4 \frac{7^{y}•7^{-x}}{5^{y}•5^{-x}} = 1.4

7 y x 5 y x = 1.4 \frac{7^{y-x}}{5^{y-x}} = 1.4

( 7 5 ) y x = 1.4 (\frac{7}{5})^{y-x} = 1.4

( 1.4 ) y x = 1.4 (1.4)^{y-x} = 1.4

Implying y x = 1 y-x= 1 or y = x + 1 y= x+1

From the first equation

7 x 5 y = x + 1 = 175 7^{x}•5^{y=x+1} = 175

( 7 × 5 ) x = 175 / 5 (7×5)^{x} = 175/5

3 5 x = 35 35^{x} = 35

Meaning x = 1 x=1 hence y = 1 + 1 = 2 y= 1+1= 2

y y + x = 2 2 + 1 = 8 y^{y+x}= 2^{2+1}= \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...