Find z z

Geometry Level 3

cos ( z ) = 3 \large \cos(z) = 3

Find the complex number z z satisfying the equation above.

Note: k k is an integer.

2 k π i ln ( 81 ± 16 2 2k\pi -i\ln(81\pm16\sqrt 2 2 k π i ln ( 27 ± 8 2 ) 2k\pi-i\ln(27\pm 8\sqrt 2) 2 k π i ln ( 3 ± 2 2 ) 2k\pi-i\ln(3\pm 2\sqrt 2) 2 k π i ln ( 9 ± 4 2 ) 2k\pi-i \ln(9\pm 4\sqrt 2)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 16, 2018

Relevant wiki: Euler's Formula

cos z = 3 By Euler’s formula e i θ = cos θ + i sin θ e i z + e i z 2 = 3 e i z + e i z = 6 Multiply both sides by e i z e 2 i z 6 e i z + 1 = 0 Solve for e i z \begin{aligned} \cos z & = 3 & \small \color{#3D99F6} \text{By Euler's formula }e^{i\theta} = \cos \theta + i \sin \theta \\ \frac {e^{iz}+e^{-iz}}2 & = 3 \\ e^{iz}+e^{-iz} & = 6 & \small \color{#3D99F6} \text{Multiply both sides by }e^{iz} \\ e^{2iz}-6e^{iz} + 1 & = 0 & \small \color{#3D99F6} \text{Solve for }e^{iz} \end{aligned}

e i z = 6 ± 6 2 4 2 Let z = x + i y e i ( x + i y ) = 3 ± 2 2 e y e i x = ( 3 ± 2 2 ) ( 1 ) = e 3 ± 2 2 e 2 k π i where k Z x = 2 k π y = ln ( 3 ± 2 2 ) z = 2 k π i ln ( 3 ± 2 2 ) \begin{aligned} \implies e^{iz} & = \frac {6 \pm \sqrt{6^2-4}}2 & \small \color{#3D99F6} \text{Let }z = x + iy \\ e^{i(x+iy)}& = 3 \pm 2\sqrt 2 \\ {\color{#3D99F6}e^{-y}}\color{#D61F06} e^{ix} & = {\color{#3D99F6}(3 \pm 2\sqrt 2)}\color{#D61F06}(1) \\ & = {\color{#3D99F6}e^{3 \pm 2\sqrt 2}}\color{#D61F06}e^{2k\pi i} & \small \color{#D61F06} \text{where }k \in \mathbb Z \\ \color{#D61F06} x & \color{#D61F06}= 2k \pi \\ \color{#3D99F6}y & \color{#3D99F6}= - \ln (3 \pm 2\sqrt 2) \\ \implies z & = \boxed{2k \pi - i\ln (3 \pm 2\sqrt 2)} \end{aligned}

Samuel Nascimento
Jun 15, 2018

From the Euler's theorem: cos(z) = 1/2*(e^iz+e^-iz)

cos(z) = 1/2*(e^iz+e^-iz) = 3 e^iz+e^-iz = 6 (e^iz)^2 - 6(e^iz) + 1 = 0 e^iz = 3+/-2√2 ln(3+/-2√2) = iz z = -iln(3+/-2√2) + 2kpi, (k e Z)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...