Find z

Algebra Level 1

Find z z .

3 z + 9 6 + 8 z 2 4 = 5 + 4 z 3 \dfrac{3z+9}{6}+\dfrac{8z-2}{4}=\dfrac{5+4z}{3}

7 17 \dfrac{7}{17} 3 7 \dfrac{3}{7} 8 15 \dfrac{8}{15} 4 7 \dfrac{4}{7}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

3 z + 9 6 + 8 z 2 4 = 5 + 4 z 3 \dfrac{3z+9}{6}+\dfrac{8z-2}{4}=\dfrac{5+4z}{3}

Multiply both sides by 12 12 .

12 ( 3 z + 9 6 + 8 z 2 4 = 5 + 4 z 3 ) 12\left(\dfrac{3z+9}{6}+\dfrac{8z-2}{4}=\dfrac{5+4z}{3}\right)

2 ( 3 z + 9 ) + 3 ( 8 z 2 ) = 4 ( 5 + 4 z ) 2(3z+9)+3(8z-2)=4(5+4z)

Simplify by applying the distributive property and combine like terms.

6 z + 18 + 24 z 6 = 20 + 16 z 6z+18+24z-6=20+16z

14 z = 8 14z=8

Divide both sides by 14 14 to get

z = 8 14 = 4 7 z=\dfrac{8}{14}=\boxed{\dfrac{4}{7}}

why should I multiply both sides by 12?

tobia donadon - 1 year, 11 months ago

12 is the lowest common denominator here, allows you to get rid of the fractions.

Vratislav Jindřich - 1 year, 10 months ago
Oon Han
Dec 9, 2018

We can solve this by multiplying both sides by 12 to eliminate all of the fractions. 3 z + 9 6 + 8 z 2 4 = 5 + 4 z 3 12 ( 3 z + 9 6 + 8 z 2 4 ) = 12 ( 5 + 4 z 3 ) 6 z + 18 + 24 z 6 = 20 + 16 z 14 z = 8 z = 4 7 \begin{aligned} \frac{3z+9}{6} + \frac{8z-2}{4} &= \frac{5+4z}{3} \\ 12\left(\frac{3z+9}{6} + \frac{8z-2}{4}\right) &= 12\left(\frac{5+4z}{3}\right) \\ 6z+18+24z-6 &= 20+16z \\ 14z &= 8 \\ z &= \boxed{\frac{4}{7}} \\ \end{aligned} Therefore, the answer is 4 7 \displaystyle \frac{4}{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...