Finding e e through a a

Calculus Level 3

lim n ( n + a n a ) n = e \displaystyle \large \lim_{n \to \infty} \left(\frac{n + a}{n - a}\right)^n = e

Find the value of a a that satisfies the equation above. If the answer can be expressed as m n \dfrac mn for positive integers ( m , n ) (m, n) , enter your answer as ( n + m ) n \left(\sqrt{n + \sqrt{m}}\right)^n .

Notation: e 2.71828 e \approx 2.71828 denotes the Euler's number .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Steven Yuan
Jul 10, 2017

lim n ( n + a n a ) n = e ln ( lim n ( n + a n a ) n ) = ln e lim n ln ( n + a n a ) n = 1 lim n n ln n + a n a = 1 lim n ln n + a n a 1 n = 1. \begin{aligned} \lim_{n \rightarrow \infty} \left (\dfrac{n + a}{n - a} \right)^n &= e \\ \ln \left ( \lim_{n \rightarrow \infty} \left (\dfrac{n + a}{n - a} \right)^n \right ) &= \ln e \\ \lim_{n \rightarrow \infty} \ln \left (\dfrac{n + a}{n - a} \right)^n &= 1 \\ \lim_{n \rightarrow \infty} n \ln \dfrac{n + a}{n - a} &= 1 \\ \lim_{n \rightarrow \infty} \dfrac{\ln \frac{n +a}{n - a}}{\frac{1}{n}} &= 1. \end{aligned}

The left hand side limit is of the form 0 0 , \dfrac{0}{0}, so we can apply L'Hopital's rule:

lim n ln ( n + a ) ln ( n a ) 1 n = 1 lim n 1 n + a 1 n a 1 n 2 = 1 lim n 2 a n 2 a 2 1 n 2 = 1 lim n 2 a n 2 n 2 a 2 = 1 2 a = 1 a = 1 2 . \begin{aligned} \lim_{n \rightarrow \infty} \dfrac{\ln (n+a) - \ln (n - a)}{\frac{1}{n}} &= 1 \\ \lim_{n \rightarrow \infty} \dfrac{\frac{1}{n + a} - \frac{1}{n - a}}{-\frac{1}{n^2}} &= 1 \\ \lim_{n \rightarrow \infty} \dfrac{-\frac{2a}{n^2 - a^2}}{-\frac{1}{n^2}} &= 1 \\ \lim_{n \rightarrow \infty} \dfrac{2an^2}{n^2 - a^2} &= 1 \\ 2a &= 1 \\ a &= \dfrac{1}{2}. \end{aligned}

Thus, m = 1 , n = 2 , m = 1, n = 2, and ( n + m ) n = ( 2 + 1 ) 2 = 3 . \left (\sqrt{n + \sqrt{m}} \right)^n = \left (\sqrt{2 + \sqrt{1}} \right)^2 = \boxed{3}.

e = lim n ( n + a n a ) n = lim n ( n a + 2 a n a ) n = lim n ( 1 + 2 a n a ) n = lim n ( 1 + 1 n a 2 a ) n a 2 a × 2 a + a Let u = n a 2 a = lim u ( 1 + 1 u ) 2 a u + a e = e 2 a a = 1 2 \begin{aligned} e & =\lim_{n \to \infty} \left(\frac {n+a}{n-a} \right)^n \\ & = \lim_{n \to \infty} \left(\frac {n-a+2a}{n-a} \right)^n \\ & = \lim_{n \to \infty} \left(1 + \frac {2a}{n-a} \right)^n \\ & = \lim_{n \to \infty} \left(1 + \frac 1{\color{#3D99F6}\frac {n-a}{2a}} \right)^{{\color{#3D99F6}\frac {n-a}{2a}} \times 2a + a} & \small \color{#3D99F6} \text{Let }u = \frac {n-a}{2a} \\ & = \lim_{\color{#3D99F6}u \to \infty} \left(1 + \frac 1{\color{#3D99F6}u} \right)^{2a{\color{#3D99F6}u}+ a} \\ \implies e & = e^{2a} \\ \implies a & = \frac 12 \end{aligned}

( n + m ) n = ( 2 + 1 ) 2 = 3 \implies \left(\sqrt{n + \sqrt m}\right)^n = \left(\sqrt{2 + \sqrt 1}\right)^2 = \boxed{3}

Steven Chase
Jul 8, 2017

Note: This is an invalid approach. See comments below

The following arithmetic holds when n n is very large (tending toward infinity)

lim n ( n + a n a ) n = e = lim n ( 1 + 1 n ) n n + a n a = 1 + 1 n n + a = n a + 1 a n a n 0 2 a 1 a 1 2 \displaystyle \lim_{n \to \infty} \left(\frac{n + a}{n - a}\right)^n = e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \\ \frac{n + a}{n - a} = 1 + \frac{1}{n} \\ n + a = n - a + 1 - \frac{a}{n} \\ \frac{a}{n} \approx 0 \implies 2a \approx 1 \\ a \approx \frac{1}{2}

By your logic lim n ( 1 2 ) n = 0 = lim n ( 0 ) n \displaystyle \lim_{n\to\infty} \left( \frac12\right)^n = 0 = \lim_{n\to\infty} \left( 0\right)^n implies 1 2 = 0 \frac12 = 0 .

Pi Han Goh - 3 years, 11 months ago

Log in to reply

Agreed. Or any two fractions less than 1.

Steven Chase - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...