Finding Limits 3

Calculus Level 4

lim n 1 n ( sin t n + sin 2 t n + + sin ( n 1 ) t n ) = ? \large \lim_{n\to\infty}\dfrac{1}{n} \left(\sin\dfrac{t}{n}+\sin\dfrac{2t}{n}+\cdots+\sin\dfrac{(n-1)t}{n}\right) = \, ?

\infty 1 cos t t \frac{1-\cos t}{t} 0 0 1 sin t t \frac{1-\sin t}{t}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hana Wehbi
Aug 16, 2016

If f ( x ) f(x) is continuous in [ a , b ] [a,b] then the following is true:

lim n b a n k = 1 n f ( a + k ( b a ) n ) = a b f ( x ) d x ; \color{#D61F06}{\lim_{n\to\infty}\frac{b-a}{n}\sum_{k=1}^{n}f(a+\frac{k(b-a)}{n})=\int_{a}^{b}f(x)dx;}

let a = 0 , b = t , f ( x ) = sin x a=0, b=t, f(x)= \sin x , then: lim n t n k = 1 n sin k t n = 0 1 sin x d x = 1 cos t , \lim_{n\to\infty}\frac{t}{n} \sum_{k=1}^{n}\sin\frac{kt}{n}=\int_{0}^{1} \sin x dx= 1-\cos t,

and so lim n 1 n k = 1 n 1 sin k t n = 1 cos t t , \lim_{n\to\infty}\frac{1}{n} \sum_{k=1}^{n-1}\sin \frac{kt}{n}= \frac{1-\cos t}{t}, using the fact that lim n sin t n = 0. \lim_{n\to\infty}\frac{\sin t}{n}=0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...