Finding Limits 4

Calculus Level 2

lim n 1 n ( 1 2 n 2 + 2 2 n 2 + 3 2 n 2 + + n 2 n 2 ) = ? \large \lim_{n \to \infty} \dfrac{1}{n} \left( \dfrac{1^2}{n^2} + \dfrac{2^2}{n^2} + \dfrac{3^2}{n^2} + \cdots + \dfrac{n^2}{n^2} \right) = \, ?

1 4 \frac{1}{4} 1 6 \frac{1}{6} 1 5 \frac{1}{5} 1 3 \frac{1}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hana Wehbi
Aug 15, 2016

lim n 1 n ( 1 2 n 2 + 2 2 n 2 + 3 2 n 2 + . . . + n 2 n 2 ) = \large\lim_{n\to\infty}\frac{1}{n}(\frac{1^2}{n^2}+\frac{2^2}{n^2}+\frac{3^2}{n^2}+...+\frac{n^2}{n^2})=

lim n 1 2 + 2 2 + 3 2 + . . . + n 2 n 3 = \large\lim_{n\to\infty}\frac{1^2+2^2+3^2+...+n^2}{n^3}=

lim n ( n ) ( n + 1 ) ( 2 n + 1 ) 6 n 3 = \large\lim_{n\to\infty}\frac{(n)(n+1)(2n+1)}{6n^3}=

lim n ( 1 + 1 / n ) ( 2 + 1 / n ) 6 = 1 3 = 0 1 x 2 d x \large\lim_{n\to\infty}\frac{(1+1/n)(2+1/n)}{6}=\boxed{\frac{1}{3}}= \int_0^1 x^2dx

1.- lim n 1 n m = 1 n m 2 n 2 = 0 1 x 2 d x = [ x 3 3 ] 0 1 = 1 3 \displaystyle \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{m = 1}^n \frac{m^2}{n^2} = \int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3} 2.-

Applying Stolz-Cesaro theorem lim n 1 n m = 1 n m 2 n 2 = lim n ( n + 1 ) 2 ( n + 1 ) 3 n 3 = 1 3 \displaystyle \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{m = 1}^n \frac{m^2}{n^2} = \lim_{n \to \infty} \frac{(n + 1)^2}{(n + 1)^3 - n^3} = \frac{1}{3}

Nice solution.

Hana Wehbi - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...