Finding Limits 6

Calculus Level pending

lim n ( 1 p n p + 1 + 2 p n p + 1 + 3 p n p + 1 + + n p n p + 1 ) = ? \large \lim_{n \to \infty} \left( \dfrac{1^p}{n^{p+1}} + \dfrac{2^p}{n^{p+1}} + \dfrac{3^p}{n^{p+1}} + \cdots + \dfrac{n^p}{n^{p+1}} \right) = \, ?

Evaluate the limit above for constant p > 1 p>-1 .

1 1 p + 1 p+1 \infty 1 p + 1 \frac{1}{p+1} p p 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 17, 2016

Relevant wiki: Riemann Sums

L = lim n k = 1 n k p n p + 1 = lim n 1 n k = 1 n ( k n ) p By Riemann sums = a b x p d x a = lim n 1 n = 0 , b = lim n n n = 1 = 0 1 x p d x = 1 p + 1 \begin{aligned} L & = \lim_{n \to \infty} \sum_{k=1}^n \frac {k^p}{n^{p+1}} \\ & = \lim_{n \to \infty} \frac 1n \sum_{k=1}^n \left( \frac kn \right)^p & \small \color{#3D99F6}{\text{By Riemann sums}} \\ & = \int_a^b x^p dx & \small \color{#3D99F6}{a = \lim_{n \to \infty} \frac 1n = 0, \ b = \lim_{n \to \infty} \frac nn = 1} \\ & = \int_0^1 x^p dx \\ & = \boxed{\dfrac 1{p+1}} \end{aligned}

Nice solution. Thank you.

Hana Wehbi - 4 years, 10 months ago

Log in to reply

You are welcome.

Chew-Seong Cheong - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...