Finding Limits 1

Calculus Level 3

Evaluate the following:

lim x 0 0 x sin t 3 d t x 4 \lim_{x\to 0} \dfrac {\large {\int_{0}^{x} \sin t^3 dt}} {x^4}

1 2 \frac{1}{2} 4 4 1 4 \frac{1}{4} 1 3 \frac{1}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hana Wehbi
Aug 13, 2016

The conditions of L'Hopital's Rule are satisfied, so that the required limit is:

lim x 0 d d x 0 x ( sin t 3 ) d t d d x ( x 4 ) = lim x 0 sin x 3 4 x 3 = lim x 0 d d x ( sin x 3 ) d d x ( 4 x 3 ) = lim x 0 3 x 2 cos x 3 12 x 2 = 1 4 \large\lim_{x\to 0}\large\frac{\frac{d}{dx}\int_0^x( \sin t^3) dt}{\frac{d}{dx}(x^4)}=\lim_{x\to 0}\frac {\sin x^3}{4x^3}= \lim_{x\to 0} \frac{\frac{d}{dx}(\sin x^3)}{\frac{d}{dx}(4x^3)}=\lim_{x\to 0} \frac {3x^2 \cos x^3}{12x^2} = \frac{1}{4}

Chew-Seong Cheong
Aug 12, 2016

L = lim x 0 1 x 4 0 x sin t 3 d t By Maclaurin series = lim x 0 1 x 4 0 x n = 0 ( 1 ) n t 6 n + 3 ( 2 n + 1 ) ! d t = lim x 0 1 x 4 n = 0 0 x ( 1 ) n t 6 n + 3 ( 2 n + 1 ) ! d t = lim x 0 1 x 4 n = 0 ( 1 ) n t 6 n + 4 ( 6 n + 4 ) ( 2 n + 1 ) ! 0 x = lim x 0 1 x 4 n = 0 ( 1 ) n x 6 n + 4 ( 6 n + 4 ) ( 2 n + 1 ) ! = lim x 0 n = 0 ( 1 ) n x 6 n ( 6 n + 4 ) ( 2 n + 1 ) ! = ( 1 ) 0 ( 6 ( 0 ) + 4 ) ( 2 ( 0 ) + 1 ) ! = 1 4 \begin{aligned} L & = \lim_{x \to 0} \frac 1{x^4} \int_0^x \color{#3D99F6}{\sin t^3} \ dt & \small \color{#3D99F6}{\text{By Maclaurin series}} \\ & = \lim_{x \to 0} \frac 1{x^4} \int_0^x \color{#3D99F6}{\sum_{n=0}^\infty \frac {(-1)^n t^{6n+3}}{(2n+1)!}} \ dt \\ & = \lim_{x \to 0} \frac 1{x^4} \sum_{n=0}^\infty \int_0^x \frac {(-1)^n t^{6n+3}}{(2n+1)!} \ dt \\ & = \lim_{x \to 0} \frac 1{x^4} \sum_{n=0}^\infty \frac {(-1)^n t^{6n+4}}{(6n+4)(2n+1)!} \bigg|_0^x \\ & = \lim_{x \to 0} \frac 1{x^4} \sum_{n=0}^\infty \frac {(-1)^n x^{6n+4}}{(6n+4)(2n+1)!} \\ & = \lim_{x \to 0} \sum_{n=0}^\infty \frac {(-1)^n x^{6n}}{(6n+4)(2n+1)!} \\ & = \frac {(-1)^0}{(6(0)+4)(2(0)+1)!} \\ & = \boxed{\dfrac 14} \end{aligned}

Nice solution.

Hana Wehbi - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...