Finding Nonsingular Matrices

Algebra Level 5

For any positive integers k , n k,n , the n × n n \times n matrix A k ( n ) A_k(n) has components A k ( n ) i j = ( i + j ) k 1 i , j n A_k(n)_{ij} \; = \; (i + j)^k \hspace{2cm} 1 \le i,j \le n For any k 1 k \ge 1 , let S ( k ) S(k) be the set of positive integers n n for which A k ( n ) A_k(n) is nonsingular. Let N ( k ) N(k) be the maximum element of S ( k ) S(k) . It can be shown that k = 1 1 k N ( k ) 2 = a π b c \sum_{k=1}^\infty \frac{1}{k N(k)^2} \; = \; a - \frac{\pi^b}{c} where a , b , c a,b,c are positive integers. What is the value of a + b + c a + b + c ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 22, 2020

Consider the vectors s ( m ) R n \mathbf{s}(m) \in \mathbb{R}^n defined by s ( m ) = ( j m ) 1 j n 0 m k \mathbf{s}(m) \; = \; \big(j^m\big)_{1 \le j \le n} \hspace{2cm} 0 \le m \le k If r u \mathbf{r}_u , for 1 u n 1 \le u \le n , are the n n rows of A k ( n ) A_k(n) , then r u = ( ( u + j ) k ) 1 j n \mathbf{r}_u = \big((u+j)^k\big)_{1\le j \le n} , and so r u = m = 0 k ( k m ) u k m s ( m ) 1 u n \mathbf{r}_u \; = \; \sum_{m=0}^k \binom{k}{m} u^{k-m}\mathbf{s}(m) \hspace{2cm} 1 \le u \le n and hence r u \mathbf{r}_u belongs to the linear span S = s ( 0 ) , s ( 1 ) , . . . , s ( k ) R n \mathcal{S} = \langle \mathbf{s}(0),\mathbf{s}(1),...,\mathbf{s}(k)\rangle \le \mathbb{R}^n . Of course, S \mathcal{S} is at most ( k + 1 ) (k+1) -dimensional. Thus, if n k + 2 n \ge k+2 , then the vectors r 1 , r 2 , . . . , r n \mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_n must be linearly dependent, which implies that A k ( n ) A_k(n) is singular. In other words, S ( k ) { 1 , 2 , . . . , k + 1 } S(k) \subseteq \{1,2,...,k+1\} .

Suppose that n = k + 1 n = k+1 , and consider the k + 1 k+1 vectors r 1 , r 2 , . . . , r k + 1 S \mathbf{r}_1,\mathrm{r}_2,...,\mathbf{r}_{k+1} \in \mathcal{S} . If there exist constants α 1 , α 2 , . . . , α k + 1 \alpha_1,\alpha_2,...,\alpha_{k+1} such that u = 1 k + 1 α u r u = 0 \sum_{u=1}^{k+1}\alpha_u \mathbf{r}_u \; = \; \mathbf{0} , then u = 1 k + 1 α u ( u + j ) k = 0 1 j n \sum_{u=1}^{k+1}\alpha_u(u+j)^k \; = \; 0 \hspace{2cm} 1 \le j \le n and hence F ( X ) = u = 1 k + 1 α u ( u + X ) k F(X) \; = \; \sum_{u=1}^{k+1}\alpha_u(u+X)^k is a polynomial of degree at most k k such that F ( j ) = 0 F(j) = 0 for 1 j k + 1 1 \le j \le k+1 . This implies that F ( X ) 0 F(X) \equiv 0 . Now 0 F ( X ) u = 1 k + 1 α u m = 0 k ( k m ) u k m X m m = 0 k ( k m ) ( u = 1 k + 1 u k m α u ) X m 0 \; \equiv \; F(X) \; \equiv \; \sum_{u=1}^{k+1}\alpha_u \sum_{m=0}^k \binom{k}{m} u^{k-m}X^m \; \equiv \; \sum_{m=0}^k \binom{k}{m} \left(\sum_{u=1}^{k+1} u^{k-m}\alpha_u\right)X^m and hence we deduce that u = 1 k + 1 u m α u = 0 0 m k \sum_{u=1}^{k+1} u^m \alpha_u \; = \; 0 \hspace{2cm} 0 \le m \le k Since the Vandermonde matrix u m 1 u k + 1 , 0 m k \Vert u^m\Vert_{1 \le u \le k+1,0 \le m \le k} is nonsingular, we deduce that α 1 = α 2 = = α k + 1 = 0 \alpha_1 = \alpha_2 = \cdots = \alpha_{k+1} = 0 . Thus we deduce that r 1 , r 2 , . . . , r k + 1 \mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_{k+1} form a linearly independent set, which implies that A k ( k + 1 ) A_k(k+1) is nonsingular. In fact it is possible to show that d e t [ A k ( k + 1 ) ] = ( 1 ) 1 2 ( k + 1 ) ( k ! ) k + 1 0 \mathrm{det}\,\big[A_k(k+1)\big] \; = \; (-1)^{\lfloor \frac12(k+1)\rfloor} (k!)^{k+1} \; \neq 0 Thus N ( k ) = k + 1 N(k) = k+1 , and so k = 1 1 k N ( k ) 2 = k = 1 1 k ( k + 1 ) 2 = k = 1 ( 1 k 1 k + 1 1 ( k + 1 ) 2 ) = 1 k = 2 1 k 2 = 2 1 6 π 2 \sum_{k=1}^\infty \frac{1}{kN(k)^2} \; = \; \sum_{k=1}^\infty \frac{1}{k(k+1)^2} \; = \; \sum_{k=1}^\infty \left(\frac{1}{k} - \frac{1}{k+1} - \frac{1}{(k+1)^2}\right) \; = \; 1 - \sum_{k=2}^\infty \frac{1}{k^2} \; = \; 2 - \tfrac16\pi^2 making the answer 2 + 2 + 6 = 10 2 + 2 + 6 = 10 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...