How many groups of three successive numbers have the property that the square of the middle number is greater by unity than the product of the other two numbers?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If the first of the sought-for numbers is x,then the equation we can set up looks like this,
( x + 1 ) 2 =x(x+2)+1
Removing brackets we get the equation,
x 2 +2x+1= x 2 +2x+1
But we can't find x.This means that we have an identity and it holds true for all values of x.And so any three numbers taken in succession possess the property required.Indeed take any three numbers at random
2,3,4
and we see that
3 2 -2*4=1
Hence the answer is infinite.