Finding Polynomial

Algebra Level 4

Let P ( x ) = x 3 3 x + 1 P (x) = x^{3}-3x+1 . Find the polynomial Q Q whose roots are the fifth powers of the roots of P P .

Q ( x ) = x 3 + 15 x 2 198 x + 1 Q(x)=x^{3}+15x^{2}-198x+1 Q ( x ) = x 3 15 x 2 198 x 1 Q(x)=x^{3}-15x^{2}-198x-1 Q ( x ) = x 3 + 15 x 2 198 x 1 Q(x)=x^{3}+15x^{2}-198x-1 Q ( x ) = x 3 15 x 2 198 x + 1 Q(x)=x^{3}-15x^{2}-198x+1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Utsav Banerjee
May 9, 2015

Let p p be a root of the equation P ( x ) = x 3 3 x + 1 = 0 P(x)=x^3-3x+1=0

Then, p 3 3 p = 1 p^3-3p=-1 or, 1 = p ( p 2 3 ) -1=p(p^2-3)

Raising both sides to the 5th power, we get

1 = p 5 ( p 2 3 ) 5 = p 5 ( p 10 15 p 8 + 90 p 6 270 p 4 + 405 p 2 243 ) -1=p^5(p^2-3)^5=p^5(p^{10}-15p^8+90p^6-270p^4+405p^2-243)

or, 1 = p 5 ( p 10 243 15 ( p 4 3 p 2 ) ( p ( p 3 3 p ) + 9 ) ) -1=p^5(p^{10}-243-15(p^4-3p^2)(p(p^3-3p)+9))

Since p 3 3 p = 1 p^3-3p=-1 , we get

1 = p 5 ( p 10 243 + 15 ( p 5 3 p 3 9 p ( p 3 3 p ) ) ) -1=p^5(p^{10}-243+15(p^5-3p^3-9p(p^3-3p)))

or 1 = p 5 ( p 10 243 + 15 ( p 5 3 ( p 3 3 p ) ) ) -1=p^5(p^{10}-243+15(p^5-3(p^3-3p)))

or, 1 = p 5 ( p 10 243 + 15 ( p 5 + 3 ) ) -1=p^5(p^{10}-243+15(p^5+3))

Therefore, p 15 + 15 p 10 198 p 5 + 1 = 0 p^{15}+15p^{10}-198p^5+1=0

Let q = p 5 q=p^5 be a root of the polynomial equation Q ( x ) = 0 Q(x)=0 . Then, q 3 + 15 q 2 198 q + 1 = 0 q^3+15q^2-198q+1=0

Therefore, Q ( x ) = x 3 + 15 x 2 198 x + 1 Q(x)=x^3+15x^2-198x+1

Satvik Pandey
May 7, 2015

Let α , β , γ \alpha ,\beta ,\gamma be the roots of P ( x ) P(x) .

So

α β γ = 1 \alpha \beta \gamma =-1

α + β + γ = 0 \alpha +\beta +\gamma =0

α β + β γ + γ α = 3 \alpha \beta +\beta \gamma +\gamma \alpha =-3

Now as α \alpha is a root of P ( x ) P(x)

so α 3 3 α + 1 = 0 { \alpha }^{ 3 }-3\alpha +1=0

On Multiplying this eq by α 2 \alpha^{2} we get

α 5 3 α 3 + α 2 = 0 { \alpha }^{ 5 }-{ 3\alpha }^{ 3 }+{ \alpha }^{ 2 }=0

Similarly we get γ 5 3 γ 3 + γ 2 = 0 { \gamma }^{ 5 }-{ 3\gamma }^{ 3 }+{ \gamma }^{ 2 }=0

and β 5 3 β 3 + β 2 = 0 { \beta }^{ 5 }-{ 3\beta }^{ 3 }+{ \beta }^{ 2 }=0

On adding these equations we get

α 5 + β 5 + γ 5 = 3 ( α 3 + β 3 + γ 3 ) ( α 2 + β 2 + γ 2 ) { \alpha }^{ 5 }+{ \beta }^{ 5 }+{ \gamma }^{ 5 }=3({ \alpha }^{ 3 }+{ \beta }^{ 3 }+{ \gamma }^{ 3 })-({ \alpha }^{ 2 }+{ \beta }^{ 2 }+{ \gamma }^{ 2 })

Using algebraic identities with starting equations we get

α 5 + β 5 + γ 5 = 15 { \alpha }^{ 5 }+{ \beta }^{ 5 }+{ \gamma }^{ 5 }=-15

and ( α β γ ) 5 = 1 { (\alpha \beta \gamma ) }^{ 5 }=-1

As the polynomial which is formed is of 3 degree whose roots are the fifth powers of the roots of P ( x ) P(x)

So α 5 + β 5 + γ 5 = a 1 a 0 { \alpha }^{ 5 }+{ \beta }^{ 5 }+{ \gamma }^{ 5 }=-\frac { { a }_{ 1 } }{ { a }_{ 0 } }

and ( α β γ ) 5 = a 3 a 0 { (\alpha \beta \gamma ) }^{ 5 }=-\frac { { a }_{ 3 } }{ { a }_{ 0 } }

Here a 0 , a 1 , a 3 a_{0}, a_{1}, a_{3} are the coefficients of x 3 x^{3} and x 2 x^{2} and constant respectively.

So a 1 = 15 a_{1}=15 and a 3 = 1 a_{3}=1 . So the answer is x 3 + 15 x 2 198 x + 1 { x }^{ 3 }+{ 15x }^{ 2 }-198x+1

Here I don't bother to find the coefficient of x x because in every option there is same coefficient.

Moderator note:

As you already know this solution is incomplete because you fail to find a 2 a_2 .

How to find a2 with your method???

ritik agrawal - 3 years, 9 months ago

Log in to reply

@satvik pandey

ritik agrawal - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...