Finding the area of a triangle

Geometry Level 4

In the triangle shown above, D E B C DE || BC , F E D C FE || DC , A F = 8 AF=8 , F D = 10 FD=10 , B C = 40.5 BC=40.5 and A B = A C AB=AC . Find the area of A B C \triangle ABC correct to 5 5 decimal places.

Note: The drawing is not drawn true to scale.


The answer is 710.24908.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let B D = x BD=x . Note that A F = A G AF=AG , F D = G E FD=GE and B D = C E = x BD=CE=x . Since F E D C FE || DC , we have:

E C A E = F D A F B D A G + G E = 10 8 B D A F + F D = 10 8 x 8 + 10 = 10 8 x = 18 × 10 8 = 22.5 A B = A F + F D + B D = 8 + 10 + 22.5 = 40.5 \begin{aligned} \frac {EC}{AE} & = \frac {FD}{AF} \\ \frac {BD}{AG+GE} & = \frac {10}8 \\ \frac {BD}{AF+FD} & = \frac {10}8 \\ \frac x {8+10} & = \frac {10}8 \\ \implies x & = \frac {18 \times 10}8 = 22.5 \\ \implies AB & = AF+FD+BD \\ & = 8 + 10 + 22.5 \\ & = 40.5 \end{aligned}

Since A B = A C = B C = 40.5 AB=AC=BC=40.5 , t r i a n g l e A B C triangle ABC is equilateral and its area is 1 2 × 40. 5 2 × 3 2 710.24908 \dfrac 12 \times 40.5^2 \times \dfrac {\sqrt 3}2 \approx \boxed{710.24908}

Consider A D C \triangle ADC

A F F D = A E E C \dfrac{AF}{FD}=\dfrac{AE}{EC}

8 10 = A E E C \dfrac{8}{10}=\dfrac{AE}{EC}

4 5 = A E E C \dfrac{4}{5}=\dfrac{AE}{EC} ( 1 ) \color{#D61F06}(1)

Consider A B C \triangle ABC

A D D B = A E E C \dfrac{AD}{DB}=\dfrac{AE}{EC}

18 D B = A E E C \dfrac{18}{DB}=\dfrac{AE}{EC} ( 2 ) \color{#D61F06}(2)

Equate ( 1 ) \color{#D61F06}(1) and ( 2 ) \color{#D61F06}(2)

4 5 = 18 D B \dfrac{4}{5}=\dfrac{18}{DB}

4 ( D B ) = ( 5 ) ( 18 ) 4(DB)=(5)(18)

D B = 22.5 DB=22.5

It follows that

A B = 8 + 10 + 22.5 = 40.5 AB=8+10+22.5=40.5

Therefore, A B C \triangle ABC is an equilateral triangle.

The formula for the area of an equilateral triangle is given by A = s 2 3 4 A=\dfrac{s^2\sqrt{3}}{4} where s s = side length

Substituting, we obtain

A = 40. 5 2 3 4 = A=\dfrac{40.5^2\sqrt{3}}{4}= 710.24908 \color{#3D99F6}\boxed{710.24908} answer \boxed{\text{answer}}

Used almost the same method.

Niranjan Khanderia - 3 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...