Finding the focus

Geometry Level 4

T h e f o c u s o f t h e p a r a b o l a 4 x 2 4 x y + y 2 8 x 6 y + 5 = 0 i s The\quad focus\quad of\quad the\quad parabola\quad 4{ x }^{ 2 }-4xy+{ y }^{ 2 }-8x-6y+5=0\quad is

( 3 5 , 2 5 ) \left( \frac { 3 }{ 5 } ,\frac { 2 }{ 5 } \right) ( 2 5 , 3 5 ) \left( \frac { 2 }{ 5 } ,\frac { 3 }{ 5 } \right) ( 3 5 , 4 5 ) \left( \frac { 3 }{ 5 } ,\frac { 4 }{ 5 } \right) ( 4 5 , 3 5 ) \left( \frac { 4 }{ 5 } ,\frac { 3 }{ 5 } \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samarth Sangam
Sep 21, 2014

4 x 2 4 x y + y 2 8 x 6 y + 5 = 0 t h e e q u a t i o n c a n b e r e w r i t t e n a s 4 ( x 3 5 ) 2 4 ( x 3 5 ) ( y 1 5 ) + 4 x ( y 1 5 ) + 8 y = 1 P u t X = x 3 5 , Y = y 1 5 a n d s o l v i n g w e g e t f o c u s t o b e ( 4 5 , 3 5 ) 4{ x }^{ 2 }-4xy+{ y }^{ 2 }-8x-6y+5=0\\ the\quad equation\quad can\quad be\quad rewritten\quad as\\ 4{ \left( x-\frac { 3 }{ 5 } \right) }^{ 2 }-4\left( x-\frac { 3 }{ 5 } \right) \left( y-\frac { 1 }{ 5 } \right) +4x\left( y-\frac { 1 }{ 5 } \right) +8y=-1\\ Put\quad X=x-\frac { 3 }{ 5 } ,Y=y-\frac { 1 }{ 5 } \\ and\quad solving\quad we\quad get\quad focus\quad to\quad be\quad \left( \frac { 4 }{ 5 } ,\frac { 3 }{ 5 } \right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...