Finding the Function

Calculus Level 3

Suppose that f f is differentiable on the set of real numbers x R x \in \mathbb{R} .

Evaluate f ( 1 ) f(1) when f ( x + y ) = f(x+y) = 1 3 f ( x ) f ( y ) \frac{1}{3} f(x) f(y) for every x , y x, y and f ( 0 ) = 3 f(0) = 3 , f ( 0 ) = 6 f'(0) = 6 .

8.154 15.389 21.352 22.167

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aaghaz Mahajan
May 24, 2019

Differentiating the given relation with respect to x x we get

3 f ( x + y ) = f ( x ) f ( y ) \displaystyle 3f'\left(x+y\right)=f'\left(x\right)f\left(y\right)

Putting x = 0 x=0 we get

f ( y ) = 2 f ( y ) \displaystyle f'\left(y\right)=2f\left(y\right)

This Differential Equation can be solved easily and using f ( 0 ) = 3 f\left(0\right)=3 we finally get the function

f ( x ) = 3 e 2 x \displaystyle f\left(x\right)=3e^{2x}

So, f ( 1 ) = 3 e 2 = 22.167168... f\left(1\right)=3e^2=22.167168...

From the given expression of f(x+y), we can see that f ( n x ) 3 \dfrac{f(nx)}{3} = [ f ( x ) 3 [\dfrac{f(x)}{3} ]^n. This implies that f(x)=3 b x b^x , where b is a constant to be determined. From the condition f'(0)=6, we get b= e 2 e^2 .

Chew-Seong Cheong
May 25, 2019

Given that: f f is dufferentiable over x , y R x, y \in \mathbb R , f ( 0 ) = 3 f(0)= 3 , f ( 0 ) = 6 f'(0)=6 , and that

f ( x + y ) = 1 3 f ( x ) f ( y ) Putting y = x f ( 2 x ) = 1 3 ( f ( x ) ) 2 Differentiate both sides 2 f ( 2 x ) = 2 3 f ( x ) f ( x ) f ( 2 x ) = 1 3 f ( x ) f ( x ) Note that f ( 2 x ) = 1 3 ( f ( x ) ) 2 f ( 2 x ) = f ( 2 x ) f ( x ) f ( x ) Divide both sides by f ( 2 x ) f ( 2 x ) f ( 2 x ) = f ( x ) f ( x ) = k where k is a constant. f ( x ) = k f ( x ) Solving the differential equation f ( x ) = a e k x where a is a constant. f ( 0 ) = a = 3 f ( x ) = 3 k e k x As f ( 0 ) = 6 k = 2 f ( x ) = 3 e 2 x f ( 1 ) = 3 e 2 22.167 \begin{aligned} f(x+y) & = \frac 13 f(x) f(y) & \small \color{#3D99F6} \text{Putting }y=x \\ f(2x) & = \frac 13 (f(x))^2 & \small \color{#3D99F6} \text{Differentiate both sides} \\ 2f'(2x) & = \frac 23 f(x) f'(x) \\ f'(2x) & = \frac 13 f(x) f'(x) & \small \color{#3D99F6} \text{Note that }f(2x) = \frac 13 (f(x))^2 \\ f'(2x) & = \frac {f(2x) f'(x)}{f(x)} & \small \color{#3D99F6} \text{Divide both sides by }f(2x) \\ \frac {f'(2x)}{f(2x)} & = \frac {f'(x)}{f(x)} = \color{#3D99F6} k & \small \color{#3D99F6} \text{where }k \text{ is a constant.} \\ \implies f'(x) & = k f(x) & \small \color{#3D99F6} \text{Solving the differential equation} \\ f(x) & = {\color{#3D99F6}a} e^{kx} & \small \color{#3D99F6} \text{where }a \text{ is a constant.} \\ f(0) & = a = 3 \\ f'(x) & = 3ke^{kx} & \small \color{#3D99F6} \text{As }f'(0) = 6 \implies k = 2 \\ \implies f(x) & = 3e^{2x} \\ f(1) & = 3e^2 \approx \boxed{22.167} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...