Finding The Logs

Algebra Level 2

{ a = log x 2 b = log x 3 c = log x 5 \large \begin{cases} a = \log_x 2 \\ b = \log_x 3 \\ c = \log_x 5 \end{cases}

What is the value of log x ( 1 × 2 × 3 × 4 × 5 × 6 ) \log_x (1\times2\times3\times4\times5\times6) in terms of a a , b b and c c as defined above?

4 a + 2 b + c 4a + 2b + c 12 a + 9 b + 5 c 12a + 9b + 5c 3 a + b + c 3a + b + c 2 a + 3 b + 5 c 2a + 3b + 5c

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Properties of Logarithms - Basic

log x ( 6 ! ) = log x ( 2 4 3 2 5 ) = 4 log x 2 + 2 log x 3 + log x 5 = 4 a + 2 b + c \begin{aligned} \log_x (6!) & = \log_x (2^4 \cdot 3^2 \cdot 5) \\ & = 4 \log_x 2 + 2 \log_x 3 + \log_x 5 \\ & = \boxed{4a+2b+c} \end{aligned}

Moderator note:

Yes. The reason why we write 6 ! 6! as 2 4 × 3 2 × 5 2^4 \times 3^2 \times 5 is because we want to write log x ( 1 × 2 × 3 × 4 × 5 × 6 ) \log_x (1\times2\times3\times4\times5\times6) as a linear combination of log x 2 , log x 3 \log_x 2, \log_x 3 and log x 5 \log_x 5 .

Bonus question : What would the answer be if the conditions { a = log x 2 b = log x 3 c = log x 5 \begin{cases} a = \log_x 2 \\ b = \log_x 3 \\ c = \log_x 5 \end{cases} were replaced by { a = log 2 x b = log 3 x c = log 5 x \begin{cases} a = \log_2 x \\ b = \log_3 x \\ c = \log_5 x \end{cases} ?

Let a = log x 2 a = \log_{x}2 , b = log x 3 b = \log_{x}3 and c = log x 5 c = \log_{x}5 . Then:

log x ( 6 ! ) = log x ( 6 5 4 3 2 ) = log x 6 + log x 5 + log x 4 + log x 3 + log x 2 = log x ( 2 3 ) + log x 5 + log x ( 2 2 ) + log x 3 + log x 2 = log x 2 + log x 3 + log x 5 + log x 2 + log x 2 + log x 3 + log x 2 = 4 log x 2 + 2 log x 3 + log x 5 = 4 a + 2 b + c \begin{aligned} \log_{x}(6!) &= \log_{x}(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2) \\ &= \log_{x}6 + \log_{x}5 + \log_{x}4 + \log_{x}3 + \log_{x}2 \\ &= \log_{x}(2 \cdot 3) + \log_{x}5 + \log_{x}(2 \cdot 2) + \log_{x}3 + \log_{x}2 \\ &= \log_{x}2 + \log_{x}3 + \log_{x}5 + \log_{x}2 + \log_{x}2 + \log_{x}3 + \log_{x}2 \\ &= 4\log_{x}2 + 2\log_{x}3 + \log_{x}5 \\ &= 4a + 2b + c \end{aligned}

as required.

Moderator note:

Great rendition of your work! You have utilized the property log a + log b = log ( a × b ) \log a + \log b = \log (a \times b) well!

Bonus question : If this time, we are given the numerical value of x x , is it always true that a < b < c a<b<c ? Why or why not?

J D
Aug 7, 2016

Should be 4a + b + c

Moderator note:

Can you explain how you arrived at the answer? Did you remember to account for 6 = 2 × 3 6 = 2 \times 3 ?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...