Finding the measure of an angle inside triangle

Geometry Level 5

In A B C \triangle ABC , point D D and E E lies on A C AC and A B AB respectively, such that A B D = 2 0 \angle ABD=20^\circ , D B C = 5 0 \angle DBC=50^\circ , B C E = 6 0 \angle BCE=60^\circ and E C A = 1 0 \angle ECA=10^\circ . Find D E C \angle DEC . Submit your answer to the nearest integer.


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 28, 2017

Let B C = 1 BC = 1 and use sine rule on D B C \triangle DBC :

D C sin B D C = B C sin B D C D C sin 5 0 = 1 sin 6 0 D C = sin 5 0 sin 6 0 \begin{aligned} \frac {DC}{\sin \angle BDC} & = \frac {BC}{\sin \angle BDC} \\ \frac {DC}{\sin 50^\circ} & = \frac 1{\sin 60^\circ} \\ \implies DC & = \frac {\sin 50^\circ}{\sin 60^\circ} \end{aligned}

Using sine rule on E B C \triangle EBC :

E C sin E B C = B C sin B E C E C sin 7 0 = 1 sin 5 0 E C = sin 7 0 sin 5 0 \begin{aligned} \frac {EC}{\sin \angle EBC} & = \frac {BC}{\sin \angle BEC} \\ \frac {EC}{\sin 70^\circ} & = \frac 1{\sin 50^\circ} \\ \implies EC & = \frac {\sin 70^\circ}{\sin 50^\circ} \end{aligned}

Let D E C = θ \angle DEC = \theta and use sine rule on D E C \triangle DEC :

sin D E C D C = sin E D C E C Note that E D C = 18 0 1 0 θ sin θ D C = sin ( 17 0 θ ) E C E C sin θ = D C sin ( 17 0 θ ) Note that sin ( 18 0 x ) = sin x E C sin θ = D C sin ( 1 0 + θ ) sin 7 0 sin 5 0 × sin θ = sin 5 0 sin 6 0 × ( sin 1 0 cos θ + cos 1 0 sin θ ) tan θ = sin 1 0 sin 7 0 sin 6 0 sin 2 5 0 cos 1 0 0.43198722 θ 23 \begin{aligned} \frac {\sin \angle DEC}{DC} & = \frac {\sin \angle EDC}{EC} & \small \color{#3D99F6} \text{Note that }\angle EDC = 180^\circ - 10^\circ - \theta \\ \frac {\sin \theta}{DC} & = \frac {\sin (170^\circ - \theta)}{EC} \\ EC \sin \theta & = DC \color{#3D99F6} \sin (170^\circ - \theta) & \small \color{#3D99F6} \text{Note that }\sin (180^\circ - x) = \sin x \\ EC \sin \theta & = DC \color{#3D99F6} \sin (10^\circ + \theta) \\ \frac {\sin 70^\circ}{\sin 50^\circ} \times \sin \theta & = \frac {\sin 50^\circ}{\sin 60^\circ} \times (\sin 10^\circ \cos \theta + \cos 10^\circ \sin \theta) \\ \implies \tan \theta & = \frac {\sin 10^\circ}{\frac {\sin 70^\circ \sin 60^\circ}{\sin^2 50^\circ} - \cos 10^\circ} \\ & \approx 0.43198722 \\ \implies \theta & \approx \boxed{23}^\circ \end{aligned}

Can you please show how you got the 2nd last step, tan theta =...

Prayas Rautray - 4 years ago

Log in to reply

I am afraid I used a calculator.

Chew-Seong Cheong - 4 years ago

OK OK I got it. It was easy. I just couldn't figure it out that day. Very nice solution. Cheers!!!!!

Prayas Rautray - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...