In , point and lies on and respectively, such that , , and . Find . Submit your answer to the nearest integer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let B C = 1 and use sine rule on △ D B C :
sin ∠ B D C D C sin 5 0 ∘ D C ⟹ D C = sin ∠ B D C B C = sin 6 0 ∘ 1 = sin 6 0 ∘ sin 5 0 ∘
Using sine rule on △ E B C :
sin ∠ E B C E C sin 7 0 ∘ E C ⟹ E C = sin ∠ B E C B C = sin 5 0 ∘ 1 = sin 5 0 ∘ sin 7 0 ∘
Let ∠ D E C = θ and use sine rule on △ D E C :
D C sin ∠ D E C D C sin θ E C sin θ E C sin θ sin 5 0 ∘ sin 7 0 ∘ × sin θ ⟹ tan θ ⟹ θ = E C sin ∠ E D C = E C sin ( 1 7 0 ∘ − θ ) = D C sin ( 1 7 0 ∘ − θ ) = D C sin ( 1 0 ∘ + θ ) = sin 6 0 ∘ sin 5 0 ∘ × ( sin 1 0 ∘ cos θ + cos 1 0 ∘ sin θ ) = sin 2 5 0 ∘ sin 7 0 ∘ sin 6 0 ∘ − cos 1 0 ∘ sin 1 0 ∘ ≈ 0 . 4 3 1 9 8 7 2 2 ≈ 2 3 ∘ Note that ∠ E D C = 1 8 0 ∘ − 1 0 ∘ − θ Note that sin ( 1 8 0 ∘ − x ) = sin x