Finding The Minimum Value

Algebra Level 4

The minimum value of x 4 x 2 24 x + 145 + x 4 23 x 2 2 x + 145 \sqrt{x^4-x^2-24x+145} + \sqrt{x^4-23x^2 - 2x+145} can be expressed in the form of a b a\sqrt b , where a a is an integer, b b is not divisible by the square of any prime. What is the value of a + b a+b ?


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 30, 2017

L = x 4 x 2 24 x + 145 + x 4 23 x 2 2 x + 145 = x 4 2 x 2 + 1 + x 2 24 x + 144 + x 4 24 x 2 + 144 + x 2 2 x + 1 = ( x 2 1 ) 2 + ( x 12 ) 2 + ( x 2 12 ) 2 + ( x 1 ) 2 Let y = x 2 = ( y 1 ) 2 + ( x 12 ) 2 + ( y 12 ) 2 + ( x 1 ) 2 \begin{aligned} L & = \sqrt{x^4-x^2-24x+145} + \sqrt{x^4-23x^2-2x+145} \\ & = \sqrt{x^4-2x^2+1 + x^2 -24x+144} + \sqrt{x^4-24x^2 + 144 + x^2 -2x+1} \\ & = \sqrt{({\color{#3D99F6}x^2}-1)^2 + (x -12)^2} + \sqrt{({\color{#3D99F6}x^2}-12)^2 + (x-1)^2} & \small \color{#3D99F6} \text{Let }y = x^2 \\ & = \sqrt{({\color{#3D99F6}y}-1)^2 + (x -12)^2} + \sqrt{({\color{#3D99F6}y}-12)^2 + (x-1)^2} \end{aligned}

We note that L L is the sum of the distances from a point P ( x , y ) P(x,y) on the curve y = x 2 y=x^2 to Q ( 1 , 12 ) Q(1,12) and R ( 12 , 1 ) R(12,1) . Then, the smallest L L is when Q Q , P P and R R are on a collinear. Therefore,

L min = ( 12 1 ) 2 + ( 1 12 ) 2 = 11 2 L_{\text{min}} = \sqrt{(12-1)^2+(1-12)^2} = 11\sqrt 2 , a + b = 11 + 2 = 13 \implies a+b = 11+2 = \boxed{13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...