The equation given above has both real as well as complex roots. Considering only the real roots, if two of its roots are and respectively such that is defined and is an integer, then evaluate its value.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x − 1 4 0 − x − 4 1 6 0 − x − 5 2 0 0 + x − 8 3 2 0 x − 1 4 0 − x − 5 2 0 0 + x − 8 3 2 0 − x − 4 1 6 0 ( x − 1 ) ( x − 5 ) 4 0 x − 2 0 0 − 2 0 0 x + 2 0 0 + ( x − 8 ) ( x − 4 ) 3 2 0 x − 1 2 8 0 − 1 6 0 x + 1 2 8 0 − ( x − 1 ) ( x − 5 ) 1 6 0 x + ( x − 8 ) ( x − 4 ) 1 6 0 x ( x − 1 ) ( x − 4 ) ( x − 5 ) ( x − 8 ) 1 6 0 x ( x 2 − 6 x + 5 − x 2 + 1 2 x − 3 2 ) ( x − 1 ) ( x − 4 ) ( x − 5 ) ( x − 8 ) 1 6 0 x ( 6 x − 2 7 ) 3 x ( 2 x − 9 ) ( ( x − 1 ) ( x − 4 ) ( x − 5 ) ( x − 8 ) 1 6 0 − 1 ) = 6 x 2 − 2 7 x = 3 x ( 2 x − 9 ) = 3 x ( 2 x − 9 ) = 3 x ( 2 x − 9 ) = 3 x ( 2 x − 9 ) = 3 x ( 2 x − 9 ) = 0
Therefore, there are three real roots to the equation x = 0 , x = 2 9 and:
( x − 1 ) ( x − 4 ) ( x − 5 ) ( x − 8 ) 1 6 0 ⟹ ( x − 1 ) ( x − 4 ) ( x − 5 ) ( x − 8 ) = 1 = 1 6 0
We note that when x = 0 , ( x − 1 ) ( x − 4 ) ( x − 5 ) ( x − 8 ) = ( − 1 ) ( − 4 ) ( − 5 ) ( − 8 ) = 1 6 0 , so is when x = 9 , ( 9 − 1 ) ( 9 − 4 ) ( 9 − 5 ) ( 9 − 8 ) = ( 8 ) ( 5 ) ( 4 ) ( 1 ) = 1 6 0 . Since x = 0 is already a root the third root is x = 9 .
Putting α = 9 and β = 2 9 , then lo g α ( 2 β ) = lo g 9 9 = 1 .