Finding the Side Length

Geometry Level 4

In triangle A B C ABC , we have B C A = 3 C A B \angle BCA = 3 \angle CAB , B C = 343 BC = 343 and A B = 504 AB = 504 . What is A C AC ?


The answer is 253.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

Jianzhi Wang
May 20, 2014

Firstly, draw C D CD and C E CE which trisect angle B C A BCA , and D D and E E are on line A B AB with D D nearer to A A . Let C A B = α \angle CAB = \alpha , so B C E = E C D = D C A = α \angle BCE=\angle ECD = \angle DCA = \alpha . Then, we can get triangle C E B CEB is similar to triangle A C B ACB since they are α 3 α 18 0 4 α \alpha - 3\alpha - 180^\circ - 4 \alpha triangles. Also, triangle D C E DCE is similar to triangle C A E CAE , since they are α 2 α 18 0 3 α \alpha - 2 \alpha - 180^\circ - 3 \alpha triangles.

Since C B D CBD is an isosceles triangle, C B = B D = 343 CB=BD=343 and A D = D C = 504 343 = 161 AD=DC=504-343=161 . Since triangle C E B CEB is similar to triangle A C B ACB , we get B E : B C = B C : B A BE : BC = BC : BA which gives B E = 16807 72 BE= \frac {16807}{72} and D E = 343 B E = 7889 72 DE=343-BE= \frac {7889}{72} . Since triangle D C E DCE is similar to triangle C A E CAE , we get D E : C E = C E : A E DE:CE = CE:AE which gives C E = 12397 72 CE= \frac {12397}{72} . Also, C D : A C = D E : C E CD:AC = DE:CE which gives 161 : A C = 7889 72 : 12397 72 161:AC= \frac {7889}{72} : \frac {12397}{72} . Solving it we get A C = 253 AC = 253 and we are done.

This is a natural approach to using the condition that C A B = 3 B C A \angle CAB = 3 \angle BCA .

Calvin Lin Staff - 7 years ago

Let α = C A B \alpha = \angle CAB . Since 0 < α < 18 0 0 < \alpha < 180^\circ , we have 0 < sin α 1 0 < \sin \alpha \leq 1 . By Sine Rule, we get that sin α 343 = sin ( 3 α ) 504 = sin ( 180 4 α ) A B \frac {\sin \alpha} {343} = \frac {\sin (3 \alpha)} {504} = \frac {\sin(180-4\alpha)}{AB} .

By the triple-angle formula, we know that sin ( 3 α ) = 3 sin α 4 sin 3 α \sin (3\alpha) = 3 \sin \alpha - 4 \sin^3 \alpha . Substitution into the first equality yields sin α 343 = 3 sin α 4 sin 3 α 504 \frac {\sin \alpha} {343} = \frac {3 \sin \alpha - 4 \sin^3 \alpha} {504} , which simplifies to 196 sin 3 α 75 sin α = 0 196 \sin^3 \alpha - 75\sin\alpha = 0 , so sin α = 5 3 14 \sin \alpha = \frac {5 \sqrt{3}} {14} , and cos α = 11 14 \cos \alpha = \frac {11}{14} . (The other 2 roots 0 0 and 5 3 14 -\frac {5 \sqrt{3} } {14} are rejected because of our condition on sin α \sin \alpha .

By the double-angle formula, we know that sin ( 18 0 4 α ) = sin ( 4 α ) = 2 sin ( 2 α ) cos ( 2 α ) = 4 sin α cos α ( 1 2 sin 2 α ) \sin (180^\circ - 4 \alpha) = \sin (4 \alpha) = 2 \sin (2\alpha) \cos (2\alpha) = 4 \sin \alpha \cos \alpha ( 1 - 2 \sin ^2 \alpha ) . Substituting into the second equality yields sin α 343 = 4 sin α cos α ( 1 2 sin 2 α ) A B \frac {\sin \alpha} {343} = \frac {4 \sin \alpha \cos \alpha (1-2 \sin^2 \alpha)} { AB} , which simplifies to A B = 343 × 4 cos α ( 1 2 sin 2 α ) AB = 343\times 4 \cos \alpha (1-2\sin^2 \alpha) . Substituting the values for sin α \sin \alpha and cos α \cos \alpha above will give A B = 253 AB = 253 .

Nathan Soedjak
May 20, 2014

Let C A B = α \angle CAB=\alpha , so that B C A = 3 α \angle BCA=3\alpha . Construct the point D D on A B \overline{AB} such that A C D = α \angle ACD=\alpha . Note that this creates the isosceles triangle A C D ACD . We also have C D B = D A C + A C D = α + α = 2 α = B C D \angle CDB=\angle DAC+\angle ACD=\alpha+\alpha=2\alpha=\angle BCD , so triangle C D B CDB is isosceles as well. This means B D = B C = 343 BD=BC=343 , and so C D = A D = A B B D = 504 343 = 161 CD=AD=AB-BD=504-343=161 .

Now by dropping the perpendicular of D D to A C \overline{AC} we see that A C = 2 ( 161 cos α ) = 322 cos α AC=2(161\cos \alpha)=322\cos \alpha . Hence we are done if we can find cos α \cos \alpha .

We consider triangle C D B CDB since we know all its side lengths and angles. By the law of sines, B C sin C D B = C D sin D B C 343 sin 2 α = 161 sin ( 18 0 4 α ) \frac{BC}{\sin \angle CDB}=\frac{CD}{\sin \angle DBC}\implies \frac{343}{\sin 2\alpha}=\frac{161}{\sin(180^{\circ}-4\alpha)} Using trig identities, sin ( 18 0 4 α ) = sin 4 α = 2 sin 2 α cos 2 α \sin(180^{\circ}-4\alpha)=\sin 4\alpha=2\sin 2\alpha\cos 2\alpha , so after some rearranging the equation becomes cos 2 α = 23 98 \cos 2\alpha=\frac{23}{98} . By the half angle formula for cosine, we have cos α = ± cos 2 α + 1 2 \cos \alpha=\pm \sqrt{\frac{\cos 2\alpha+1}{2}} . But since α \alpha and 3 α 3\alpha are angles of triangle A B C ABC , we know α + 3 α < 18 0 \alpha+3\alpha<180^{\circ} , or α < 4 5 \alpha<45^{\circ} . Therefore, cos α \cos \alpha is positive and cos α = cos 2 α + 1 2 = 11 14 \cos \alpha=\sqrt{\frac{\cos 2\alpha+1}{2}}=\frac{11}{14} . The length we seek is A C = 322 cos α = 253 AC=322\cos \alpha=\boxed{253} .

For those who tried to use sine rule or cosine rule, you have to justify why you chose particular values of cos α \cos \alpha . We actually have cos α = ± 1 sin 2 α \cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} , and you have to explain why you simply take the positive square root.

Calvin Lin Staff - 7 years ago
黎 李
May 20, 2014

DC=CE=sqrt(EB ED)=sqrt(343 (504+343))=539, DA=DB DE/DC=504 (504+343)/539=792, AC=AD-DC=792-539=253

Daren Khu
May 20, 2014

Let C A B = α \angle CAB = \alpha . Then B C A = 3 α \angle BCA = 3\alpha and A B C = 180 4 α \angle ABC = 180 - 4\alpha .

By sine rule, we have 343 s i n α = 504 s i n 3 α = A C s i n ( 180 4 α ) = A C s i n 4 α , s i n α 0 \frac{343}{sin \alpha}=\frac{504}{sin 3\alpha}=\frac{AC}{sin (180 - 4\alpha)}=\frac{AC}{sin 4\alpha}, sin \alpha \neq 0 .

From 343 s i n α = 504 s i n 3 α \frac{343}{sin \alpha}=\frac{504}{sin 3\alpha} , we have s i n 3 α s i n α = 504 343 ( 1 ) \frac{sin 3\alpha}{sin \alpha}=\frac{504}{343} - (1) .

Then, note that

s i n 3 α = s i n ( 2 α + α ) sin 3\alpha = sin (2\alpha + \alpha)

= s i n 2 α c o s α + c o s 2 α s i n α = sin 2\alpha cos \alpha + cos 2\alpha sin \alpha

= 2 s i n α c o s 2 α + s i n α ( 1 2 s i n 2 α ) = 2 sin \alpha cos^2 \alpha + sin \alpha (1 - 2sin^2 \alpha)

= 2 s i n α ( 1 s i n 2 α ) + s i n α ( 1 2 s i n 2 α ) = 2 sin \alpha (1 - sin^2 \alpha) + sin \alpha (1 - 2 sin^2 \alpha)

= 2 s i n α 2 s i n 3 α + s i n α 2 s i n 3 α = 2 sin \alpha - 2 sin^3 \alpha + sin \alpha - 2 sin^3 \alpha

= 3 s i n α 4 s i n 3 α = 3 sin \alpha - 4 sin^3 \alpha

Combining it with ( 1 ) (1) , we obtain 3 4 s i n 2 α = 504 343 s i n 2 α = 75 196 3 - 4 sin^2 \alpha = \frac{504}{343}\ \Rightarrow sin^2 \alpha = \frac{75}{196}

From 343 s i n α = A C s i n 4 α \frac{343}{sin \alpha}=\frac{AC}{sin 4\alpha} , we have s i n 4 α s i n α = A C 343 A C = 343 × s i n 4 α s i n α \frac{sin 4\alpha}{sin \alpha}=\frac{AC}{343} \Rightarrow AC = 343 \times \frac{sin 4\alpha}{sin \alpha} .

Computing s i n 4 α s i n α \frac{sin 4\alpha}{sin \alpha} , we get

s i n 4 α s i n α = 2 s i n 2 α c o s 2 α s i n α \frac{sin 4\alpha}{sin \alpha} = \frac{2 sin 2\alpha cos 2\alpha}{sin \alpha}

= 4 s i n α c o s α c o s 2 α s i n α = \frac{4 sin \alpha cos \alpha cos 2\alpha}{sin \alpha}

= 4 c o s α c o s 2 α = 4 cos \alpha cos 2\alpha

= 4 ( 1 s i n 2 α ) ( 1 2 s i n 2 α ) = 4 (\sqrt {1 - sin^2 \alpha})(1 - 2 sin^2 \alpha)

(since 0 < B A C + B C A = 4 α < 18 0 0 < α < 4 5 0^\circ < \angle BAC + \angle BCA = 4\alpha < 180^\circ \Rightarrow 0^\circ < \alpha < 45^\circ )

Thus,

A C = 343 × 4 × ( 1 s i n 2 α ) ( 1 2 s i n 2 α ) AC = 343 \times 4 \times (\sqrt {1 - sin^2 \alpha}) (1 - 2 sin^2 \alpha)

= 1372 ( 1 75 196 ) ( 1 2 ( 75 196 ) ) = 1372 (\sqrt{1 - \frac{75}{196}}) (1 - 2(\frac{75}{196}))

= 1372 ( 121 196 ) ( 23 98 ) = 1372 (\sqrt{\frac{121}{196}}) (\frac{23}{98})

= 1372 ( 11 14 ) ( 23 98 ) =1372 (\frac{11}{14}) (\frac{23}{98})

= 253 = 253

Jonathan Huang
May 20, 2014

By Law of Sines we have sin(3x)/sinx=504/343=72/49. Expanding sin(3x) as 3sin(x)cos^2(x)-sin^3(x), we can substitute cos^2(x)=1-sin^2(x) and get sin(x)=5\sqrt{3}/14. Now since <B=180-4x, sinB=sin4x, so by Law of Sines again, we have AC/343=sin(4x)/sinx.

Since sin(4x)=2sinxcosxcos(2x), we have 2 343 cos(x)cos(2x)=AC. We can easily find cos(x)=\sqrt{1-sin^2(x)). The answer is 253.

Jian Feng Gao
May 20, 2014

Let angle BCA be 3x, therefore, angle BAC is x.

From the sine law, we know that sin3x/504 = sinx/343. From the trigonometric identities, we know that sin3x = 3sinx - 4sin^3x.

Therefore (3sinx - 4sin^3x)/504 = sinx/343.

Expanding this we get sinx(sin^2x - 525/1372) = 0 Here, we have two cases, sinx=0 or sin^2x - 525/1372=0.

We know that sinx=0 is impossible because angle x would be 90 and the sum of the interior angles of the triangles will be larger than 180.

If sin^2x - 525/1372=0 then sinx = sqrt (525/1372) and x = arcsin (sqrt (525/1372).

Let angle ABC=y

To use the cosine law, we need to know angle y, and knowing that the sum of the angles in a triangle sums up to 180, we get the equation,

So,y=180-4(arcsin (sqrt (525/1372)))

Therefore, from the cosine law, we know that AC^2 = 504^2 + 343^2 - 2(504)(343)cosy

After subbing in y, we will get AC^2 = 64009

Therefore AC = 253

Shashwat Rastogi
May 20, 2014

Suppose, ∠BAC = x then ∠BCA = 3x and since the sum of all angles of the triangle is 180 degress, therefore ∠ABC = (180-4x).

Now, applying the sine rule for a traingle:

sin x / 343 = sin 3x / 504 = sin (180-4x) / (length of AC) Solve the first two part of the equation to get the value of x and then solve the third part of the equation with any one of the other parts to determine the length of AC.

Winston Wright
May 20, 2014

Calling angle BCA x, Using the law of sines and the expansions for sin 3x and sin 4x, which is equivalent to sin CBA, AC can be found with some computation.

Duc Minh Phan
May 20, 2014

Let B C = a , C A = b , A B = c BC=a, CA=b, AB=c . By using sine rule, we have a sin A = b sin B = c sin C \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} . Since C = 3 A C=3A , we have sin C = 3 sin A 4 sin 3 A \sin C=3\sin A-4\sin^3A . Hence, 504 sin A = 343 ( 3 sin A 4 sin 3 A ) sin A = 5 3 14 504\sin A = 343 (3\sin A-4\sin^3A) \Leftrightarrow \sin A=\frac{5\sqrt{3}}{14} (since 0 < sin A < 1 0<\sin A<1 ). Then sin B = sin ( 18 0 4 A ) = sin 4 A = 4 sin A cos A cos 2 A = 1265 3 4802 \sin B=\sin(180^\circ-4A)=\sin4A=4\sin A\cos A\cos 2A = \frac{1265\sqrt{3}}{4802} . Therefore, b = 343 5 3 14 1265 3 4802 = 253 b = \frac{343}{\frac{5\sqrt{3}}{14}} \cdot \frac{1265\sqrt3}{4802}=253 .

Calvin Lin Staff
May 13, 2014

Let B A C = θ \angle BAC = \theta , so we have A C B = 3 θ \angle ACB = 3\theta . Place D D on A B AB such that D C A = D A C = θ \angle DCA = \angle DAC = \theta . Hence D A C DAC is isosceles and we have D C B = 3 θ θ = 2 θ \angle DCB = 3\theta - \theta = 2\theta . Also B D C = D A C + D C A = 2 D A C = 2 θ \angle BDC = \angle DAC + \angle DCA = 2 \angle DAC = 2\theta . Hence B D C BDC is also isosceles.

Thus D B = B C = 343 DB=BC=343 and D C = D A = 504 343 = 161 DC=DA=504-343=161 . Applying the cosine rule to triangle B D C BDC , we have cos A B C = 34 3 2 + 34 3 2 16 1 2 2 × 343 × 343 \cos \angle ABC = \frac {343^2+343^2-161^2}{2 \times 343 \times 343} . Applying the cosine rule to triangle A B C ABC , we have cos A B C = 50 4 2 + 34 3 2 A C 2 2 × 504 × 343 \cos \angle ABC = \frac {504^2 + 343^2 - AC^2}{2 \times 504 \times 343} . Equating these expressions, we solve for A C AC (and use the fact that 504 = 343 + 161 504=343+161 ) to obtain

A C 2 = ( 343 + 161 ) 2 + 34 3 2 + ( 16 1 2 2 × 34 3 2 ) ( 343 + 161 343 ) = 2 × 34 3 2 + 2 × 343 × 161 + 16 1 2 + 16 1 2 + 16 1 3 343 2 × 34 3 2 2 × 343 × 161 = 2 × 16 1 2 + 16 1 3 343 = 16 1 2 ( 2 × 343 + 161 ) 7 3 = 2 3 2 ( 121 ) = 25 3 2 \begin{aligned} AC^2 & = (343+161)^2+343^2 +(161^2-2\times 343^2) \left(\frac {343+161}{343}\right) \\ & = 2\times 343^2 + 2 \times 343 \times 161 + 161^2 + 161^2 + \frac {161^3}{343} - 2 \times 343^2 - 2 \times 343 \times 161 \\ & = 2\times 161^2 + \frac {161^3} {343} \\ & = \frac {161^2 ( 2 \times 343 + 161) } {7^3} \\ & = 23^2 (121) \\ &= 253^2 \end{aligned}

Therefore A C = 253 AC = 253 .

Eddy Li
Dec 22, 2015

Sayak Chakrabarty
May 20, 2014

by sine law we get (3sinx-4sin^3x)/504=sinx/343 solving x from there then 180-4x .next we take cos of that value 2 343 504 and subtract it from 504 504+343*343. we take the squareroot of that no. and it is the value of AC.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...